Properties

Label 5.5.38569.1-17.1-d1
Base field 5.5.38569.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}+a^{3}-9a^{2}-3a+4\right){x}{y}+\left(a^{4}-4a^{2}+1\right){y}={x}^{3}+\left(-2a^{4}-a^{3}+10a^{2}+5a-7\right){x}^{2}+\left(-2a^{4}-2a^{3}+9a^{2}+8a-6\right){x}+3a^{4}-15a^{2}-a+12\)
sage: E = EllipticCurve([K([4,-3,-9,1,2]),K([-7,5,10,-1,-2]),K([1,0,-4,0,1]),K([-6,8,9,-2,-2]),K([12,-1,-15,0,3])])
 
gp: E = ellinit([Polrev([4,-3,-9,1,2]),Polrev([-7,5,10,-1,-2]),Polrev([1,0,-4,0,1]),Polrev([-6,8,9,-2,-2]),Polrev([12,-1,-15,0,3])], K);
 
magma: E := EllipticCurve([K![4,-3,-9,1,2],K![-7,5,10,-1,-2],K![1,0,-4,0,1],K![-6,8,9,-2,-2],K![12,-1,-15,0,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a-1)\) = \((a^3-3a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3+3a+1)\) = \((a^3-3a-1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 17 \) = \(17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{315075396}{17} a^{4} - \frac{315033996}{17} a^{3} - \frac{1206535946}{17} a^{2} + \frac{1164182948}{17} a - \frac{133556319}{17} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{4} - 5 a^{2} - 2 a + 3 : 2 a^{2} - a - 2 : 1\right)$
Height \(0.0027245193813642034196756792861580799124\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0027245193813642034196756792861580799124 \)
Period: \( 22204.289790874928111786887940415873091 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.54020172 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a-1)\) \(17\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 17.1-d consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.