Properties

Label 5.5.38569.1-17.1-b4
Base field 5.5.38569.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}+a^{3}-4a^{2}-3a+1\right){x}{y}+\left(a^{4}+a^{3}-4a^{2}-3a+1\right){y}={x}^{3}+{x}^{2}+\left(10a^{4}+5a^{3}-55a^{2}-40a+10\right){x}+38a^{4}+12a^{3}-226a^{2}-161a+64\)
sage: E = EllipticCurve([K([1,-3,-4,1,1]),K([1,0,0,0,0]),K([1,-3,-4,1,1]),K([10,-40,-55,5,10]),K([64,-161,-226,12,38])])
 
gp: E = ellinit([Polrev([1,-3,-4,1,1]),Polrev([1,0,0,0,0]),Polrev([1,-3,-4,1,1]),Polrev([10,-40,-55,5,10]),Polrev([64,-161,-226,12,38])], K);
 
magma: E := EllipticCurve([K![1,-3,-4,1,1],K![1,0,0,0,0],K![1,-3,-4,1,1],K![10,-40,-55,5,10],K![64,-161,-226,12,38]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a-1)\) = \((a^3-3a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((22a^4+61a^3-130a^2-191a+150)\) = \((a^3-3a-1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6975757441 \) = \(17^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{63035509038380061495748094}{6975757441} a^{4} + \frac{128497588344189495041715327}{6975757441} a^{3} - \frac{53235816441571130890411893}{6975757441} a^{2} - \frac{108520961136492735262181368}{6975757441} a + \frac{30922567893134525558722397}{6975757441} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(2 a^{4} + 2 a^{3} - 8 a^{2} - 6 a + 3 : a^{4} - 7 a^{2} - 5 a + 2 : 1\right)$ $\left(\frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{11}{4} a^{2} - 2 a - \frac{9}{4} : \frac{9}{4} a^{4} + \frac{19}{8} a^{3} - \frac{17}{2} a^{2} - \frac{55}{8} a + \frac{19}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 119.39362332875188596118815369413857716 \)
Tamagawa product: \( 8 \)
Torsion order: \(4\)
Leading coefficient: \( 1.21588343 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a-1)\) \(17\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 17.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.