Properties

Label 5.5.38569.1-17.1-b1
Base field 5.5.38569.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}+a^{3}-4a^{2}-3a+1\right){x}{y}+\left(a^{4}+a^{3}-4a^{2}-3a+1\right){y}={x}^{3}+{x}^{2}+\left(220a^{4}+180a^{3}-995a^{2}-755a+265\right){x}+2642a^{4}+2159a^{3}-11769a^{2}-9228a+3361\)
sage: E = EllipticCurve([K([1,-3,-4,1,1]),K([1,0,0,0,0]),K([1,-3,-4,1,1]),K([265,-755,-995,180,220]),K([3361,-9228,-11769,2159,2642])])
 
gp: E = ellinit([Polrev([1,-3,-4,1,1]),Polrev([1,0,0,0,0]),Polrev([1,-3,-4,1,1]),Polrev([265,-755,-995,180,220]),Polrev([3361,-9228,-11769,2159,2642])], K);
 
magma: E := EllipticCurve([K![1,-3,-4,1,1],K![1,0,0,0,0],K![1,-3,-4,1,1],K![265,-755,-995,180,220],K![3361,-9228,-11769,2159,2642]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a-1)\) = \((a^3-3a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-489a^4-856a^3-1899a^2-380a+11167)\) = \((a^3-3a-1)^{16}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -48661191875666868481 \) = \(-17^{16}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{4610174704839696307681031019985}{48661191875666868481} a^{4} - \frac{3646564185715492789590081314801}{48661191875666868481} a^{3} + \frac{20165287106639313522557968182292}{48661191875666868481} a^{2} + \frac{15946358590737268511990785275315}{48661191875666868481} a - \frac{5829599632074986762576303718745}{48661191875666868481} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{9}{2} a^{4} + \frac{17}{4} a^{3} - \frac{75}{4} a^{2} - 14 a + \frac{7}{4} : \frac{25}{4} a^{4} + \frac{35}{8} a^{3} - \frac{61}{2} a^{2} - \frac{183}{8} a + \frac{67}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3.7310507290234964362871298029418305363 \)
Tamagawa product: \( 16 \)
Torsion order: \(2\)
Leading coefficient: \( 1.21588343 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a-1)\) \(17\) \(16\) \(I_{16}\) Split multiplicative \(-1\) \(1\) \(16\) \(16\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 17.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.