Properties

Label 5.5.38569.1-17.1-a1
Base field 5.5.38569.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-4a^{2}+1\right){x}{y}+\left(a^{4}-4a^{2}+a+2\right){y}={x}^{3}+\left(-3a^{4}-a^{3}+14a^{2}+4a-8\right){x}^{2}+\left(2a^{4}-2a^{3}-11a^{2}+6a+9\right){x}-a^{4}-4a^{3}+7a^{2}+16a-12\)
sage: E = EllipticCurve([K([1,0,-4,0,1]),K([-8,4,14,-1,-3]),K([2,1,-4,0,1]),K([9,6,-11,-2,2]),K([-12,16,7,-4,-1])])
 
gp: E = ellinit([Polrev([1,0,-4,0,1]),Polrev([-8,4,14,-1,-3]),Polrev([2,1,-4,0,1]),Polrev([9,6,-11,-2,2]),Polrev([-12,16,7,-4,-1])], K);
 
magma: E := EllipticCurve([K![1,0,-4,0,1],K![-8,4,14,-1,-3],K![2,1,-4,0,1],K![9,6,-11,-2,2],K![-12,16,7,-4,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a-1)\) = \((a^3-3a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3+3a+1)\) = \((a^3-3a-1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 17 \) = \(17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{315075396}{17} a^{4} - \frac{315033996}{17} a^{3} - \frac{1206535946}{17} a^{2} + \frac{1164182948}{17} a - \frac{133556319}{17} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 281.99074242407923374645843740949081257 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.43587179 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a-1)\) \(17\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 17.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.