Properties

Base field 5.5.36497.1
Label 5.5.36497.1-9.1-a4
Conductor \((9,a^{2} - a - 2)\)
Conductor norm \( 9 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1)
 
gp: K = nfinit(a^5 - 2*a^4 - 3*a^3 + 5*a^2 + a - 1);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\( y^2 + \left(2 a^{4} - 3 a^{3} - 7 a^{2} + 8 a + 3\right) x y + \left(a^{4} - a^{3} - 4 a^{2} + 3 a + 3\right) y = x^{3} + \left(a^{2} - a - 3\right) x^{2} + \left(71 a^{4} - 36 a^{3} - 299 a^{2} - 24 a + 56\right) x + 497 a^{4} - 316 a^{3} - 1964 a^{2} - 104 a + 377 \)
sage: E = EllipticCurve(K, [2*a^4 - 3*a^3 - 7*a^2 + 8*a + 3, a^2 - a - 3, a^4 - a^3 - 4*a^2 + 3*a + 3, 71*a^4 - 36*a^3 - 299*a^2 - 24*a + 56, 497*a^4 - 316*a^3 - 1964*a^2 - 104*a + 377])
 
gp: E = ellinit([2*a^4 - 3*a^3 - 7*a^2 + 8*a + 3, a^2 - a - 3, a^4 - a^3 - 4*a^2 + 3*a + 3, 71*a^4 - 36*a^3 - 299*a^2 - 24*a + 56, 497*a^4 - 316*a^3 - 1964*a^2 - 104*a + 377],K)
 
magma: E := ChangeRing(EllipticCurve([2*a^4 - 3*a^3 - 7*a^2 + 8*a + 3, a^2 - a - 3, a^4 - a^3 - 4*a^2 + 3*a + 3, 71*a^4 - 36*a^3 - 299*a^2 - 24*a + 56, 497*a^4 - 316*a^3 - 1964*a^2 - 104*a + 377]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((9,a^{2} - a - 2)\) = \( \left(a^{2} - 1\right)^{2} \)
sage: E.conductor()
 
magma: Conductor(E);
 
\(N(\mathfrak{N}) \) = \( 9 \) = \( 3^{2} \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
\(\mathfrak{D}\) = \((4782969,a + 862924,a^{4} - 2 a^{3} - 3 a^{2} + 5 a + 2795912,a^{4} - a^{3} - 4 a^{2} + 2 a + 2291728,a^{2} - a + 2619034)\) = \( \left(a^{2} - 1\right)^{14} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
\(N(\mathfrak{D})\) = \( 4782969 \) = \( 3^{14} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
\(j\) = \( -\frac{7766624836025326355}{6561} a^{4} + \frac{6488464292861171239}{2187} a^{3} + \frac{4481598027790652077}{2187} a^{2} - \frac{45640052133196144267}{6561} a + \frac{15340352105491554221}{6561} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.

sage: E.rank()
 
magma: Rank(E);
 

Regulator: not available

sage: gens = E.gens(); gens
 
magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: E.regulator_of_points(gens)
 
magma: Regulator(gens);
 

Torsion subgroup

Structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Generator: $\left(2 a^{4} - \frac{5}{4} a^{3} - \frac{33}{4} a^{2} - \frac{1}{4} a + \frac{7}{4} : -\frac{9}{8} a^{4} + \frac{3}{2} a^{3} + \frac{31}{8} a^{2} - \frac{9}{4} a - \frac{17}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - 1\right) \) \(3\) \(4\) \(I_{8}^*\) Additive \(-1\) \(2\) \(14\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.