Properties

Label 5.5.36497.1-507.1-p1
Base field 5.5.36497.1
Conductor norm \( 507 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-3a^{3}-7a^{2}+8a+3\right){x}{y}+\left(a^{4}-2a^{3}-2a^{2}+4a\right){y}={x}^{3}+\left(-a^{4}+2a^{3}+4a^{2}-5a-3\right){x}^{2}+\left(3a^{4}-7a^{3}-a^{2}+12a-7\right){x}+5a^{4}-11a^{3}-7a^{2}+23a-8\)
sage: E = EllipticCurve([K([3,8,-7,-3,2]),K([-3,-5,4,2,-1]),K([0,4,-2,-2,1]),K([-7,12,-1,-7,3]),K([-8,23,-7,-11,5])])
 
gp: E = ellinit([Polrev([3,8,-7,-3,2]),Polrev([-3,-5,4,2,-1]),Polrev([0,4,-2,-2,1]),Polrev([-7,12,-1,-7,3]),Polrev([-8,23,-7,-11,5])], K);
 
magma: E := EllipticCurve([K![3,8,-7,-3,2],K![-3,-5,4,2,-1],K![0,4,-2,-2,1],K![-7,12,-1,-7,3],K![-8,23,-7,-11,5]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+4a^3-10a+1)\) = \((a^2-1)\cdot(a^3-3a)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 507 \) = \(3\cdot13^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((17a^4-36a^3-59a^2+121a+37)\) = \((a^2-1)^{4}\cdot(a^3-3a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 390971529 \) = \(3^{4}\cdot13^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1246362404}{81} a^{4} - \frac{1041117076}{27} a^{3} - \frac{719458786}{27} a^{2} + \frac{7323102649}{81} a - \frac{2459871980}{81} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{4} + 2 a^{3} + 2 a^{2} - 4 a + 1 : -a^{4} + 3 a^{3} + a^{2} - 6 a + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 189.25074287965995866112421450409525607 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.98124875 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a^3-3a)\) \(13\) \(2\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 507.1-p consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.