Properties

Label 5.5.36497.1-507.1-c4
Base field 5.5.36497.1
Conductor norm \( 507 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a\right){x}^{2}+\left(19a^{4}-5a^{3}-95a^{2}+4a+19\right){x}-52a^{4}+38a^{3}+182a^{2}+30a-17\)
sage: E = EllipticCurve([K([-1,0,1,0,0]),K([0,3,1,-1,0]),K([-2,-1,1,0,0]),K([19,4,-95,-5,19]),K([-17,30,182,38,-52])])
 
gp: E = ellinit([Polrev([-1,0,1,0,0]),Polrev([0,3,1,-1,0]),Polrev([-2,-1,1,0,0]),Polrev([19,4,-95,-5,19]),Polrev([-17,30,182,38,-52])], K);
 
magma: E := EllipticCurve([K![-1,0,1,0,0],K![0,3,1,-1,0],K![-2,-1,1,0,0],K![19,4,-95,-5,19],K![-17,30,182,38,-52]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+4a^3-10a+1)\) = \((a^2-1)\cdot(a^3-3a)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 507 \) = \(3\cdot13^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-65a^4+60a^3+177a^2+17a+85)\) = \((a^2-1)^{8}\cdot(a^3-3a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -31668693849 \) = \(-3^{8}\cdot13^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{7766624836025326355}{6561} a^{4} + \frac{6488464292861171239}{2187} a^{3} + \frac{4481598027790652077}{2187} a^{2} - \frac{45640052133196144267}{6561} a + \frac{15340352105491554221}{6561} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{4} - 3 a^{3} - a^{2} + 5 a + 4 : 7 a^{4} - 12 a^{3} - 22 a^{2} + 22 a + 16 : 1\right)$
Height \(0.073567810663153802471279723413290363196\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{9}{4} a^{4} + 3 a^{3} + \frac{15}{2} a^{2} - 5 a - \frac{9}{4} : \frac{5}{8} a^{3} - \frac{1}{2} a^{2} - \frac{13}{8} a + \frac{5}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.073567810663153802471279723413290363196 \)
Period: \( 1725.9630798290260225889278814933342368 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.32323271 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((a^3-3a)\) \(13\) \(2\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 507.1-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.