Base field 5.5.36497.1
Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1)
gp (2.8): K = nfinit(a^5 - 2*a^4 - 3*a^3 + 5*a^2 + a - 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a^4 - 2*a^3 - 3*a^2 + 5*a + 2, -a^4 + 2*a^3 + 2*a^2 - 5*a, a^4 - 2*a^3 - 3*a^2 + 5*a + 2, 22858*a^4 - 15206*a^3 - 89524*a^2 - 4349*a + 16767, 2975973*a^4 - 1981540*a^3 - 11583514*a^2 - 559230*a + 2228472]),K);
sage: E = EllipticCurve(K, [a^4 - 2*a^3 - 3*a^2 + 5*a + 2, -a^4 + 2*a^3 + 2*a^2 - 5*a, a^4 - 2*a^3 - 3*a^2 + 5*a + 2, 22858*a^4 - 15206*a^3 - 89524*a^2 - 4349*a + 16767, 2975973*a^4 - 1981540*a^3 - 11583514*a^2 - 559230*a + 2228472])
gp (2.8): E = ellinit([a^4 - 2*a^3 - 3*a^2 + 5*a + 2, -a^4 + 2*a^3 + 2*a^2 - 5*a, a^4 - 2*a^3 - 3*a^2 + 5*a + 2, 22858*a^4 - 15206*a^3 - 89524*a^2 - 4349*a + 16767, 2975973*a^4 - 1981540*a^3 - 11583514*a^2 - 559230*a + 2228472],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((39,2 a^{4} - 3 a^{3} - 7 a^{2} + 6 a + 2)\) | = | \( \left(a^{2} - 1\right) \cdot \left(a^{3} - 3 a\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 39 \) | = | \( 3 \cdot 13 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((188245551,a + 13931290,a^{4} - 2 a^{3} - 3 a^{2} + 5 a + 100335980,a^{4} - a^{3} - 4 a^{2} + 2 a + 80612227,a^{2} - a + 119840059)\) | = | \( \left(a^{2} - 1\right) \cdot \left(a^{3} - 3 a\right)^{7} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 188245551 \) | = | \( 3 \cdot 13^{7} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( -\frac{167642752752633447006093524748799040238434}{188245551} a^{4} + \frac{140053631818257799009656597663946084463786}{62748517} a^{3} + \frac{96735383245269016352815198554224769104727}{62748517} a^{2} - \frac{985141440142117916445879153670063426054138}{188245551} a + \frac{331121807700898395019402938118329735513617}{188245551} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | \(\Z/2\Z\) |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
| Generator: | $\left(\frac{225}{4} a^{4} - \frac{211}{4} a^{3} - \frac{765}{4} a^{2} + 38 a + \frac{175}{4} : -\frac{101}{2} a^{4} + 43 a^{3} + \frac{1513}{8} a^{2} - \frac{141}{4} a - \frac{255}{4} : 1\right)$ |
| magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(a^{2} - 1\right) \) | \(3\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
| \( \left(a^{3} - 3 a\right) \) | \(13\) | \(1\) | \(I_{7}\) | Non-split multiplicative | \(1\) | \(1\) | \(7\) | \(7\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
| \(7\) | 7B.1.3 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4, 7, 14 and 28.
Its isogeny class
39.1-b
consists of curves linked by isogenies of
degrees dividing 28.