Properties

Label 5.5.36497.1-39.1-b8
Base field 5.5.36497.1
Conductor norm \( 39 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-2a^{3}-3a^{2}+5a+2\right){x}{y}+\left(a^{4}-2a^{3}-3a^{2}+5a+2\right){y}={x}^{3}+\left(-a^{4}+2a^{3}+2a^{2}-5a\right){x}^{2}+\left(22858a^{4}-15206a^{3}-89524a^{2}-4349a+16767\right){x}+2975973a^{4}-1981540a^{3}-11583514a^{2}-559230a+2228472\)
sage: E = EllipticCurve([K([2,5,-3,-2,1]),K([0,-5,2,2,-1]),K([2,5,-3,-2,1]),K([16767,-4349,-89524,-15206,22858]),K([2228472,-559230,-11583514,-1981540,2975973])])
 
gp: E = ellinit([Polrev([2,5,-3,-2,1]),Polrev([0,-5,2,2,-1]),Polrev([2,5,-3,-2,1]),Polrev([16767,-4349,-89524,-15206,22858]),Polrev([2228472,-559230,-11583514,-1981540,2975973])], K);
 
magma: E := EllipticCurve([K![2,5,-3,-2,1],K![0,-5,2,2,-1],K![2,5,-3,-2,1],K![16767,-4349,-89524,-15206,22858],K![2228472,-559230,-11583514,-1981540,2975973]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+3a^3+7a^2-6a-2)\) = \((a^2-1)\cdot(a^3-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 39 \) = \(3\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7a^4+22a^3+15a^2-57a+47)\) = \((a^2-1)\cdot(a^3-3a)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 188245551 \) = \(3\cdot13^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{167642752752633447006093524748799040238434}{188245551} a^{4} + \frac{140053631818257799009656597663946084463786}{62748517} a^{3} + \frac{96735383245269016352815198554224769104727}{62748517} a^{2} - \frac{985141440142117916445879153670063426054138}{188245551} a + \frac{331121807700898395019402938118329735513617}{188245551} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{225}{4} a^{4} - \frac{211}{4} a^{3} - \frac{765}{4} a^{2} + 38 a + \frac{175}{4} : -\frac{101}{2} a^{4} + 43 a^{3} + \frac{1513}{8} a^{2} - \frac{141}{4} a - \frac{255}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.11929347050357914580304418407633738654 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.49927138 \)
Analytic order of Ш: \( 9604 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a^3-3a)\) \(13\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 7, 14 and 28.
Its isogeny class 39.1-b consists of curves linked by isogenies of degrees dividing 28.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.