Properties

Label 5.5.36497.1-39.1-b7
Base field 5.5.36497.1
Conductor norm \( 39 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-1\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}+\left(10238a^{4}-25455a^{3}-18068a^{2}+59680a-20375\right){x}+897162a^{4}-2245513a^{3}-1558277a^{2}+5265005a-1771850\)
sage: E = EllipticCurve([K([-1,-1,1,0,0]),K([2,1,-1,0,0]),K([-1,-1,1,0,0]),K([-20375,59680,-18068,-25455,10238]),K([-1771850,5265005,-1558277,-2245513,897162])])
 
gp: E = ellinit([Polrev([-1,-1,1,0,0]),Polrev([2,1,-1,0,0]),Polrev([-1,-1,1,0,0]),Polrev([-20375,59680,-18068,-25455,10238]),Polrev([-1771850,5265005,-1558277,-2245513,897162])], K);
 
magma: E := EllipticCurve([K![-1,-1,1,0,0],K![2,1,-1,0,0],K![-1,-1,1,0,0],K![-20375,59680,-18068,-25455,10238],K![-1771850,5265005,-1558277,-2245513,897162]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+3a^3+7a^2-6a-2)\) = \((a^2-1)\cdot(a^3-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 39 \) = \(3\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((416132a^4+1381052a^3-2778251a^2-7898059a+900721)\) = \((a^2-1)^{4}\cdot(a^3-3a)^{28}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1255737557015654093436832343547201 \) = \(3^{4}\cdot13^{28}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{719563077579420768826778357723754883977964219744702}{1255737557015654093436832343547201} a^{4} - \frac{381278393594661046595984821496687550631447920681206}{418579185671884697812277447849067} a^{3} - \frac{876030344833436911152144359572205314535143035049625}{418579185671884697812277447849067} a^{2} + \frac{2519311520172502928352178004640753313415969058351782}{1255737557015654093436832343547201} a + \frac{1753426510580954709523077468627597477978011837927249}{1255737557015654093436832343547201} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{241}{4} a^{4} + \frac{273}{2} a^{3} + \frac{533}{4} a^{2} - \frac{635}{2} a + \frac{351}{4} : -\frac{115}{8} a^{4} + \frac{229}{8} a^{3} + 24 a^{2} - \frac{369}{8} a + \frac{25}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.059646735251789572901522092038168693268 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.49927138 \)
Analytic order of Ш: \( 2401 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a^3-3a)\) \(13\) \(2\) \(I_{28}\) Non-split multiplicative \(1\) \(1\) \(28\) \(28\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 7, 14 and 28.
Its isogeny class 39.1-b consists of curves linked by isogenies of degrees dividing 28.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.