Properties

Base field 5.5.36497.1
Label 5.5.36497.1-39.1-b1
Conductor \((39,2 a^{4} - 3 a^{3} - 7 a^{2} + 6 a + 2)\)
Conductor norm \( 39 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1)
 
gp: K = nfinit(a^5 - 2*a^4 - 3*a^3 + 5*a^2 + a - 1);
 

Weierstrass equation

\( y^2 + \left(2 a^{4} - 3 a^{3} - 6 a^{2} + 7 a + 1\right) x y + \left(2 a^{4} - 3 a^{3} - 6 a^{2} + 7 a + 2\right) y = x^{3} + \left(a^{3} - a^{2} - 3 a + 2\right) x^{2} + \left(-324 a^{4} + 554 a^{3} + 1092 a^{2} - 1175 a - 803\right) x - 4619 a^{4} + 7541 a^{3} + 16214 a^{2} - 16147 a - 11168 \)
magma: E := ChangeRing(EllipticCurve([2*a^4 - 3*a^3 - 6*a^2 + 7*a + 1, a^3 - a^2 - 3*a + 2, 2*a^4 - 3*a^3 - 6*a^2 + 7*a + 2, -324*a^4 + 554*a^3 + 1092*a^2 - 1175*a - 803, -4619*a^4 + 7541*a^3 + 16214*a^2 - 16147*a - 11168]),K);
 
sage: E = EllipticCurve(K, [2*a^4 - 3*a^3 - 6*a^2 + 7*a + 1, a^3 - a^2 - 3*a + 2, 2*a^4 - 3*a^3 - 6*a^2 + 7*a + 2, -324*a^4 + 554*a^3 + 1092*a^2 - 1175*a - 803, -4619*a^4 + 7541*a^3 + 16214*a^2 - 16147*a - 11168])
 
gp: E = ellinit([2*a^4 - 3*a^3 - 6*a^2 + 7*a + 1, a^3 - a^2 - 3*a + 2, 2*a^4 - 3*a^3 - 6*a^2 + 7*a + 2, -324*a^4 + 554*a^3 + 1092*a^2 - 1175*a - 803, -4619*a^4 + 7541*a^3 + 16214*a^2 - 16147*a - 11168],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((39,2 a^{4} - 3 a^{3} - 7 a^{2} + 6 a + 2)\) = \( \left(a^{2} - 1\right) \cdot \left(a^{3} - 3 a\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 39 \) = \( 3 \cdot 13 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((188245551,a + 13931290,a^{4} - 2 a^{3} - 3 a^{2} + 5 a + 100335980,a^{4} - a^{3} - 4 a^{2} + 2 a + 80612227,a^{2} - a + 119840059)\) = \( \left(a^{2} - 1\right) \cdot \left(a^{3} - 3 a\right)^{7} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp: E.disc
 
\(N(\mathfrak{D})\) = \( 188245551 \) = \( 3 \cdot 13^{7} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
\(j\) = \( \frac{2355906526241759285697134}{188245551} a^{4} - \frac{2787719689830134456132135}{62748517} a^{3} + \frac{1984187604735214198024472}{62748517} a^{2} + \frac{2481423171042881641939612}{188245551} a - \frac{1509608417930564685187136}{188245551} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp: E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.

magma: Rank(E);
 
sage: E.rank()
 

Regulator: not available

magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: gens = E.gens(); gens
 
magma: Regulator(gens);
 
sage: E.regulator_of_points(gens)
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
Generator: $\left(7 a^{4} - 13 a^{3} - 30 a^{2} + 36 a + 28 : -19 a^{4} + 33 a^{3} + 66 a^{2} - 68 a - 37 : 1\right)$
magma: [piT(P) : P in Generators(T)];
 
sage: T.gens()
 
gp: T[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - 1\right) \) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\( \left(a^{3} - 3 a\right) \) \(13\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 7, 14 and 28.
Its isogeny class 39.1-b consists of curves linked by isogenies of degrees dividing 28.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.