Properties

Label 5.5.36497.1-39.1-a8
Base field 5.5.36497.1
Conductor norm \( 39 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(2a^{4}-3a^{3}-7a^{2}+7a+3\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a-1\right){x}^{2}+\left(-4706a^{4}+2553a^{3}+11325a^{2}-4556a-5334\right){x}+186623a^{4}+106339a^{3}-305029a^{2}-211344a-18618\)
sage: E = EllipticCurve([K([1,0,0,0,0]),K([-1,3,1,-1,0]),K([3,7,-7,-3,2]),K([-5334,-4556,11325,2553,-4706]),K([-18618,-211344,-305029,106339,186623])])
 
gp: E = ellinit([Polrev([1,0,0,0,0]),Polrev([-1,3,1,-1,0]),Polrev([3,7,-7,-3,2]),Polrev([-5334,-4556,11325,2553,-4706]),Polrev([-18618,-211344,-305029,106339,186623])], K);
 
magma: E := EllipticCurve([K![1,0,0,0,0],K![-1,3,1,-1,0],K![3,7,-7,-3,2],K![-5334,-4556,11325,2553,-4706],K![-18618,-211344,-305029,106339,186623]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+3a^3+7a^2-6a-2)\) = \((a^2-1)\cdot(a^3-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 39 \) = \(3\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7a^4+22a^3+15a^2-57a+47)\) = \((a^2-1)\cdot(a^3-3a)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 188245551 \) = \(3\cdot13^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{167642752752633447006093524748799040238434}{188245551} a^{4} + \frac{140053631818257799009656597663946084463786}{62748517} a^{3} + \frac{96735383245269016352815198554224769104727}{62748517} a^{2} - \frac{985141440142117916445879153670063426054138}{188245551} a + \frac{331121807700898395019402938118329735513617}{188245551} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(4 a^{4} - 21 a^{3} - 67 a^{2} + 71 a + \frac{267}{4} : -3 a^{4} + 12 a^{3} + 37 a^{2} - 39 a - \frac{279}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 26.028153154633316474744048596697764773 \)
Tamagawa product: \( 7 \)  =  \(1\cdot7\)
Torsion order: \(2\)
Leading coefficient: \( 0.953702256 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((a^3-3a)\) \(13\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.6.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 7, 14 and 28.
Its isogeny class 39.1-a consists of curves linked by isogenies of degrees dividing 28.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.