Properties

Label 5.5.36497.1-39.1-a3
Base field 5.5.36497.1
Conductor norm \( 39 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{4}-2a^{3}-3a^{2}+6a+1\right){y}={x}^{3}+\left(a^{4}-2a^{3}-3a^{2}+5a\right){x}^{2}+\left(a^{4}-2a^{3}-4a^{2}+5a+3\right){x}+4a^{4}-3a^{3}-15a^{2}+1\)
sage: E = EllipticCurve([K([-2,0,1,0,0]),K([0,5,-3,-2,1]),K([1,6,-3,-2,1]),K([3,5,-4,-2,1]),K([1,0,-15,-3,4])])
 
gp: E = ellinit([Polrev([-2,0,1,0,0]),Polrev([0,5,-3,-2,1]),Polrev([1,6,-3,-2,1]),Polrev([3,5,-4,-2,1]),Polrev([1,0,-15,-3,4])], K);
 
magma: E := EllipticCurve([K![-2,0,1,0,0],K![0,5,-3,-2,1],K![1,6,-3,-2,1],K![3,5,-4,-2,1],K![1,0,-15,-3,4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+3a^3+7a^2-6a-2)\) = \((a^2-1)\cdot(a^3-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 39 \) = \(3\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7a^4+10a^3+21a^2-19a-5)\) = \((a^2-1)^{7}\cdot(a^3-3a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -28431 \) = \(-3^{7}\cdot13\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1065196}{28431} a^{4} + \frac{5295800}{9477} a^{3} + \frac{4095677}{9477} a^{2} - \frac{51097538}{28431} a + \frac{11953519}{28431} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{4} + 2 a^{3} + 7 a^{2} - 2 a - 1 : 3 a^{4} - a^{3} - 12 a^{2} - 5 a + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2915.1531533189314451713334428301496546 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(4\)
Leading coefficient: \( 0.953702256 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)
\((a^3-3a)\) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.6.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 7, 14 and 28.
Its isogeny class 39.1-a consists of curves linked by isogenies of degrees dividing 28.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.