Properties

Label 5.5.36497.1-37.1-d1
Base field 5.5.36497.1
Conductor norm \( 37 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-2a^{3}-3a^{2}+6a+2\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{3}+5a+2\right){x}^{2}+\left(7a^{4}-48a^{3}-16a^{2}+121a-21\right){x}-2a^{4}+130a^{3}-11a^{2}-300a+131\)
sage: E = EllipticCurve([K([2,6,-3,-2,1]),K([2,5,0,-1,0]),K([-2,0,1,0,0]),K([-21,121,-16,-48,7]),K([131,-300,-11,130,-2])])
 
gp: E = ellinit([Polrev([2,6,-3,-2,1]),Polrev([2,5,0,-1,0]),Polrev([-2,0,1,0,0]),Polrev([-21,121,-16,-48,7]),Polrev([131,-300,-11,130,-2])], K);
 
magma: E := EllipticCurve([K![2,6,-3,-2,1],K![2,5,0,-1,0],K![-2,0,1,0,0],K![-21,121,-16,-48,7],K![131,-300,-11,130,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-2a^3-2a^2+4a+1)\) = \((a^4-2a^3-2a^2+4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37 \) = \(37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-6a^3-9a^2+18a+3)\) = \((a^4-2a^3-2a^2+4a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -50653 \) = \(-37^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1272945793794372}{50653} a^{4} + \frac{859591705080800}{50653} a^{3} + \frac{4922533480405137}{50653} a^{2} + \frac{233798144853843}{50653} a - \frac{948239678172729}{50653} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{4} - 2 a^{3} + 3 a - 4 : 6 a^{4} - 16 a^{3} - 13 a^{2} + 38 a - 6 : 1\right)$
Height \(0.0098697986302844935643455617563804060516\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0098697986302844935643455617563804060516 \)
Period: \( 6342.5736039157764152450411213116277979 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.63838223 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-2a^3-2a^2+4a+1)\) \(37\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 37.1-d consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.