Properties

Label 5.5.36497.1-25.1-c1
Base field 5.5.36497.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-2a^{3}-3a^{2}+5a+1\right){x}{y}+\left(2a^{4}-3a^{3}-6a^{2}+6a+1\right){y}={x}^{3}+\left(-a^{4}+2a^{3}+3a^{2}-6a-1\right){x}^{2}+\left(-2a^{4}+4a^{3}+8a^{2}-11a-8\right){x}+2a^{4}-6a^{3}-6a^{2}+17a+7\)
sage: E = EllipticCurve([K([1,5,-3,-2,1]),K([-1,-6,3,2,-1]),K([1,6,-6,-3,2]),K([-8,-11,8,4,-2]),K([7,17,-6,-6,2])])
 
gp: E = ellinit([Polrev([1,5,-3,-2,1]),Polrev([-1,-6,3,2,-1]),Polrev([1,6,-6,-3,2]),Polrev([-8,-11,8,4,-2]),Polrev([7,17,-6,-6,2])], K);
 
magma: E := EllipticCurve([K![1,5,-3,-2,1],K![-1,-6,3,2,-1],K![1,6,-6,-3,2],K![-8,-11,8,4,-2],K![7,17,-6,-6,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-2a^3-2a^2+5a)\) = \((a^4-2a^3-2a^2+5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+4a^2+3a-1)\) = \((a^4-2a^3-2a^2+5a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25 \) = \(25\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1476597}{5} a^{4} + \frac{213601}{5} a^{3} + \frac{3235067}{5} a^{2} - \frac{577692}{5} a - \frac{972922}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + a^{2} + 4 a - 1 : -2 a^{4} + 2 a^{3} + 8 a^{2} - 3 a - 5 : 1\right)$
Height \(0.0011915852019629283848482522890810055218\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0011915852019629283848482522890810055218 \)
Period: \( 36862.413526938178796555258780699156591 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.14960935 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-2a^3-2a^2+5a)\) \(25\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 25.1-c consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.