Properties

Label 5.5.24217.1-97.1-a3
Base field 5.5.24217.1
Conductor norm \( 97 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{4}-4a^{2}+a\right){y}={x}^{3}+\left(2a^{4}-a^{3}-9a^{2}+4a+2\right){x}^{2}+\left(5a^{4}+5a^{3}-25a^{2}-21a-5\right){x}+222a^{4}-145a^{3}-1003a^{2}+419a+280\)
sage: E = EllipticCurve([K([1,1,0,0,0]),K([2,4,-9,-1,2]),K([0,1,-4,0,1]),K([-5,-21,-25,5,5]),K([280,419,-1003,-145,222])])
 
gp: E = ellinit([Polrev([1,1,0,0,0]),Polrev([2,4,-9,-1,2]),Polrev([0,1,-4,0,1]),Polrev([-5,-21,-25,5,5]),Polrev([280,419,-1003,-145,222])], K);
 
magma: E := EllipticCurve([K![1,1,0,0,0],K![2,4,-9,-1,2],K![0,1,-4,0,1],K![-5,-21,-25,5,5],K![280,419,-1003,-145,222]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-5a^2+5a+4)\) = \((a^4-a^3-5a^2+5a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 97 \) = \(97\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-14a^4+17a^3+74a^2-46a-82)\) = \((a^4-a^3-5a^2+5a+4)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -88529281 \) = \(-97^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{298244004312035170314}{88529281} a^{4} - \frac{224778495680070789765}{88529281} a^{3} - \frac{1183654637007985475374}{88529281} a^{2} + \frac{271982011051561202569}{88529281} a + \frac{648707452832843494777}{88529281} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-6 a^{4} + 3 a^{3} + \frac{107}{4} a^{2} - \frac{13}{2} a - \frac{25}{4} : a^{4} + \frac{1}{8} a^{3} - \frac{41}{8} a^{2} - \frac{25}{8} a + \frac{1}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 9.3610492402523353763895353185589322852 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 0.962463662 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-5a^2+5a+4)\) \(97\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 97.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.