Properties

Base field 5.5.24217.1
Label 5.5.24217.1-85.1-b1
Conductor \((85,3 a^{4} - a^{3} - 14 a^{2} + 3 a + 5)\)
Conductor norm \( 85 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 5*x^3 - x^2 + 3*x + 1)
 
gp (2.8): K = nfinit(a^5 - 5*a^3 - a^2 + 3*a + 1);
 

Weierstrass equation

\( y^2 + x y + \left(a^{4} - 4 a^{2} + 1\right) y = x^{3} + \left(2 a^{4} - 2 a^{3} - 9 a^{2} + 7 a + 5\right) x^{2} + \left(-182 a^{4} + 70 a^{3} + 883 a^{2} - 144 a - 489\right) x - 1350 a^{4} + 501 a^{3} + 6548 a^{2} - 1077 a - 3642 \)
magma: E := ChangeRing(EllipticCurve([1, 2*a^4 - 2*a^3 - 9*a^2 + 7*a + 5, a^4 - 4*a^2 + 1, -182*a^4 + 70*a^3 + 883*a^2 - 144*a - 489, -1350*a^4 + 501*a^3 + 6548*a^2 - 1077*a - 3642]),K);
 
sage: E = EllipticCurve(K, [1, 2*a^4 - 2*a^3 - 9*a^2 + 7*a + 5, a^4 - 4*a^2 + 1, -182*a^4 + 70*a^3 + 883*a^2 - 144*a - 489, -1350*a^4 + 501*a^3 + 6548*a^2 - 1077*a - 3642])
 
gp (2.8): E = ellinit([1, 2*a^4 - 2*a^3 - 9*a^2 + 7*a + 5, a^4 - 4*a^2 + 1, -182*a^4 + 70*a^3 + 883*a^2 - 144*a - 489, -1350*a^4 + 501*a^3 + 6548*a^2 - 1077*a - 3642],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((85,3 a^{4} - a^{3} - 14 a^{2} + 3 a + 5)\) = \( \left(2 a^{4} - a^{3} - 9 a^{2} + 2 a + 3\right) \cdot \left(a^{2} - 2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 85 \) = \( 5 \cdot 17 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((24565,a^{4} - 5 a^{2} + 24129,-a^{4} + 5 a^{2} + a + 16779,2 a^{4} - a^{3} - 9 a^{2} + 3 a + 20586,-a^{4} + a^{3} + 5 a^{2} - 3 a + 5139)\) = \( \left(2 a^{4} - a^{3} - 9 a^{2} + 2 a + 3\right) \cdot \left(a^{2} - 2\right)^{3} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 24565 \) = \( 5 \cdot 17^{3} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{83224382820957527}{24565} a^{4} + \frac{73316509594092944}{24565} a^{3} - \frac{352208628542010067}{24565} a^{2} - \frac{23104266017644843}{1445} a - \frac{94916633847261271}{24565} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2 a^{4} - a^{3} - 9 a^{2} + 2 a + 3\right) \) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\( \left(a^{2} - 2\right) \) \(17\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 85.1-b consists of curves linked by isogenies of degree 3.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.