Properties

Label 5.5.24217.1-85.1-a1
Base field 5.5.24217.1
Conductor norm \( 85 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-4a^{2}\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+4a+1\right){y}={x}^{3}+\left(-3a^{4}+a^{3}+14a^{2}-2a-6\right){x}^{2}+\left(-31a^{4}+10a^{3}+150a^{2}-19a-81\right){x}-59a^{4}+21a^{3}+287a^{2}-44a-160\)
sage: E = EllipticCurve([K([0,0,-4,0,1]),K([-6,-2,14,1,-3]),K([1,4,-4,-1,1]),K([-81,-19,150,10,-31]),K([-160,-44,287,21,-59])])
 
gp: E = ellinit([Polrev([0,0,-4,0,1]),Polrev([-6,-2,14,1,-3]),Polrev([1,4,-4,-1,1]),Polrev([-81,-19,150,10,-31]),Polrev([-160,-44,287,21,-59])], K);
 
magma: E := EllipticCurve([K![0,0,-4,0,1],K![-6,-2,14,1,-3],K![1,4,-4,-1,1],K![-81,-19,150,10,-31],K![-160,-44,287,21,-59]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-3a^4+a^3+14a^2-3a-5)\) = \((2a^4-a^3-9a^2+2a+3)\cdot(a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 85 \) = \(5\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^4+a^3+14a^2-3a-5)\) = \((2a^4-a^3-9a^2+2a+3)\cdot(a^2-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -85 \) = \(-5\cdot17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{678563267}{85} a^{4} + \frac{253885391}{85} a^{3} + \frac{3292945167}{85} a^{2} - \frac{31894747}{5} a - \frac{1831244214}{85} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 203.44728012315844885989183013090375718 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 1.30734954 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^4-a^3-9a^2+2a+3)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a^2-2)\) \(17\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 85.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.