Properties

Label 5.5.24217.1-73.1-b2
Base field 5.5.24217.1
Conductor norm \( 73 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+5a^{2}+a-1\right){x}{y}+\left(-a^{4}+5a^{2}+a-1\right){y}={x}^{3}+\left(-3a^{4}+a^{3}+14a^{2}-2a-5\right){x}^{2}+\left(-22a^{4}+10a^{3}+104a^{2}-20a-57\right){x}+68a^{4}-24a^{3}-329a^{2}+46a+178\)
sage: E = EllipticCurve([K([-1,1,5,0,-1]),K([-5,-2,14,1,-3]),K([-1,1,5,0,-1]),K([-57,-20,104,10,-22]),K([178,46,-329,-24,68])])
 
gp: E = ellinit([Polrev([-1,1,5,0,-1]),Polrev([-5,-2,14,1,-3]),Polrev([-1,1,5,0,-1]),Polrev([-57,-20,104,10,-22]),Polrev([178,46,-329,-24,68])], K);
 
magma: E := EllipticCurve([K![-1,1,5,0,-1],K![-5,-2,14,1,-3],K![-1,1,5,0,-1],K![-57,-20,104,10,-22],K![178,46,-329,-24,68]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+2a^3+10a^2-5a-5)\) = \((-2a^4+2a^3+10a^2-5a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 73 \) = \(73\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^4-a^3+8a^2+7a-3)\) = \((-2a^4+2a^3+10a^2-5a-5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5329 \) = \(-73^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{897914919792598}{5329} a^{4} - \frac{325870982359061}{5329} a^{3} - \frac{4373494381863622}{5329} a^{2} + \frac{691699015294266}{5329} a + \frac{2451613630132198}{5329} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(4 a^{4} - a^{3} - 18 a^{2} + a + 8 : 2 a^{4} - 2 a^{3} - 13 a^{2} + 5 a + 9 : 1\right)$
Height \(0.027170887465636756351649465338283882937\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{13}{4} a^{4} - \frac{3}{4} a^{3} - \frac{61}{4} a^{2} + \frac{1}{2} a + \frac{13}{2} : \frac{1}{2} a^{4} - \frac{7}{8} a^{3} - \frac{25}{8} a^{2} + \frac{27}{8} a + \frac{7}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.027170887465636756351649465338283882937 \)
Period: \( 4078.7942015595808877565239731989897805 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.78039127 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^4+2a^3+10a^2-5a-5)\) \(73\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 73.1-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.