Properties

Label 5.5.24217.1-73.1-a2
Base field 5.5.24217.1
Conductor norm \( 73 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{4}+a^{3}+10a^{2}-2a-4\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){y}={x}^{3}+\left(-2a^{4}+2a^{3}+9a^{2}-7a-3\right){x}^{2}+\left(-5a^{4}+5a^{3}+22a^{2}-17a-8\right){x}-a^{4}+4a^{2}+a\)
sage: E = EllipticCurve([K([-4,-2,10,1,-2]),K([-3,-7,9,2,-2]),K([2,4,-4,-1,1]),K([-8,-17,22,5,-5]),K([0,1,4,0,-1])])
 
gp: E = ellinit([Polrev([-4,-2,10,1,-2]),Polrev([-3,-7,9,2,-2]),Polrev([2,4,-4,-1,1]),Polrev([-8,-17,22,5,-5]),Polrev([0,1,4,0,-1])], K);
 
magma: E := EllipticCurve([K![-4,-2,10,1,-2],K![-3,-7,9,2,-2],K![2,4,-4,-1,1],K![-8,-17,22,5,-5],K![0,1,4,0,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+2a^3+10a^2-5a-5)\) = \((-2a^4+2a^3+10a^2-5a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 73 \) = \(73\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^4-a^3-15a^2+3a+10)\) = \((-2a^4+2a^3+10a^2-5a-5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 73 \) = \(73\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{77128415}{73} a^{4} - \frac{29275704}{73} a^{3} - \frac{374531013}{73} a^{2} + \frac{65385001}{73} a + \frac{205557366}{73} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a - 1 : -a^{4} + a^{3} + 5 a^{2} - 2 a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1065.4826133460080843562038730462748312 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.71169430 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^4+2a^3+10a^2-5a-5)\) \(73\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 73.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.