Properties

Base field 5.5.24217.1
Label 5.5.24217.1-73.1-a1
Conductor \((73,-4 a^{4} + 2 a^{3} + 18 a^{2} - 7 a - 6)\)
Conductor norm \( 73 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 5*x^3 - x^2 + 3*x + 1)
 
gp (2.8): K = nfinit(a^5 - 5*a^3 - a^2 + 3*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{3} - 3 a\right) x y + \left(a^{2} + a - 2\right) y = x^{3} + \left(2 a^{4} - 9 a^{2} + 1\right) x^{2} + \left(-2 a^{4} - 4 a^{3} + 13 a^{2} + 18 a - 18\right) x - 30 a^{4} + 5 a^{3} + 152 a^{2} - 104 \)
magma: E := ChangeRing(EllipticCurve([a^3 - 3*a, 2*a^4 - 9*a^2 + 1, a^2 + a - 2, -2*a^4 - 4*a^3 + 13*a^2 + 18*a - 18, -30*a^4 + 5*a^3 + 152*a^2 - 104]),K);
 
sage: E = EllipticCurve(K, [a^3 - 3*a, 2*a^4 - 9*a^2 + 1, a^2 + a - 2, -2*a^4 - 4*a^3 + 13*a^2 + 18*a - 18, -30*a^4 + 5*a^3 + 152*a^2 - 104])
 
gp (2.8): E = ellinit([a^3 - 3*a, 2*a^4 - 9*a^2 + 1, a^2 + a - 2, -2*a^4 - 4*a^3 + 13*a^2 + 18*a - 18, -30*a^4 + 5*a^3 + 152*a^2 - 104],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((73,-4 a^{4} + 2 a^{3} + 18 a^{2} - 7 a - 6)\) = \( \left(-2 a^{4} + 2 a^{3} + 10 a^{2} - 5 a - 5\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 73 \) = \( 73 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((5329,a^{4} - 5 a^{2} + 1991,-a^{4} + 5 a^{2} + a + 3492,2 a^{4} - a^{3} - 9 a^{2} + 3 a + 145,-a^{4} + a^{3} + 5 a^{2} - 3 a + 4775)\) = \( \left(-2 a^{4} + 2 a^{3} + 10 a^{2} - 5 a - 5\right)^{2} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 5329 \) = \( 73^{2} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{13676805271923}{5329} a^{4} + \frac{9479789620397}{5329} a^{3} + \frac{62312937090438}{5329} a^{2} - \frac{30875880058182}{5329} a - \frac{19195743311669}{5329} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(\frac{17}{4} a^{4} - \frac{9}{4} a^{3} - \frac{41}{2} a^{2} + \frac{25}{4} a + 11 : -3 a^{4} + \frac{5}{4} a^{3} + \frac{109}{8} a^{2} - \frac{25}{8} a - 5 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a^{4} + 2 a^{3} + 10 a^{2} - 5 a - 5\right) \) \(73\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 73.1-a consists of curves linked by isogenies of degree 2.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.