Properties

Label 5.5.24217.1-73.1-a1
Base field 5.5.24217.1
Conductor norm \( 73 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(2a^{4}-9a^{2}+1\right){x}^{2}+\left(-2a^{4}-4a^{3}+13a^{2}+18a-18\right){x}-30a^{4}+5a^{3}+152a^{2}-104\)
sage: E = EllipticCurve([K([0,-3,0,1,0]),K([1,0,-9,0,2]),K([-2,1,1,0,0]),K([-18,18,13,-4,-2]),K([-104,0,152,5,-30])])
 
gp: E = ellinit([Polrev([0,-3,0,1,0]),Polrev([1,0,-9,0,2]),Polrev([-2,1,1,0,0]),Polrev([-18,18,13,-4,-2]),Polrev([-104,0,152,5,-30])], K);
 
magma: E := EllipticCurve([K![0,-3,0,1,0],K![1,0,-9,0,2],K![-2,1,1,0,0],K![-18,18,13,-4,-2],K![-104,0,152,5,-30]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+2a^3+10a^2-5a-5)\) = \((-2a^4+2a^3+10a^2-5a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 73 \) = \(73\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4+a^3-8a^2-7a+3)\) = \((-2a^4+2a^3+10a^2-5a-5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5329 \) = \(-73^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{13676805271923}{5329} a^{4} + \frac{9479789620397}{5329} a^{3} + \frac{62312937090438}{5329} a^{2} - \frac{30875880058182}{5329} a - \frac{19195743311669}{5329} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{17}{4} a^{4} - \frac{9}{4} a^{3} - \frac{41}{2} a^{2} + \frac{25}{4} a + 11 : -3 a^{4} + \frac{5}{4} a^{3} + \frac{109}{8} a^{2} - \frac{25}{8} a - 5 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 532.74130667300404217810193652313741562 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.71169430 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^4+2a^3+10a^2-5a-5)\) \(73\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 73.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.