Properties

Label 5.5.24217.1-61.2-a1
Base field 5.5.24217.1
Conductor norm \( 61 \)
CM no
Base change no
Q-curve no
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-a^{3}-9a^{2}+3a+3\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(2a^{4}-10a^{2}-a+4\right){x}^{2}+\left(4a^{4}-2a^{3}-20a^{2}+6a+9\right){x}+2a^{4}-4a^{3}-7a^{2}+9a+4\)
sage: E = EllipticCurve([K([3,3,-9,-1,2]),K([4,-1,-10,0,2]),K([-2,1,1,0,0]),K([9,6,-20,-2,4]),K([4,9,-7,-4,2])])
 
gp: E = ellinit([Polrev([3,3,-9,-1,2]),Polrev([4,-1,-10,0,2]),Polrev([-2,1,1,0,0]),Polrev([9,6,-20,-2,4]),Polrev([4,9,-7,-4,2])], K);
 
magma: E := EllipticCurve([K![3,3,-9,-1,2],K![4,-1,-10,0,2],K![-2,1,1,0,0],K![9,6,-20,-2,4],K![4,9,-7,-4,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-3a)\) = \((a^3+a^2-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 61 \) = \(61\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^4-a^3-15a^2+2a+7)\) = \((a^3+a^2-3a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 61 \) = \(61\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{115152428}{61} a^{4} - \frac{248328657}{61} a^{3} + \frac{38281223}{61} a^{2} + \frac{189872228}{61} a + \frac{54566560}{61} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{4} + 5 a^{2} - 1 : -a^{2} + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 5294.1962819544817580505716150778592893 \)
Tamagawa product: \( 1 \)
Torsion order: \(5\)
Leading coefficient: \( 1.36081742 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-3a)\) \(61\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 61.2-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.