Properties

Base field 5.5.24217.1
Label 5.5.24217.1-61.1-b2
Conductor \((61,4 a^{4} - 2 a^{3} - 18 a^{2} + 5 a + 7)\)
Conductor norm \( 61 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 5*x^3 - x^2 + 3*x + 1)
 
gp (2.8): K = nfinit(a^5 - 5*a^3 - a^2 + 3*a + 1);
 

Weierstrass equation

\( y^2 + \left(3 a^{4} - a^{3} - 14 a^{2} + 3 a + 6\right) y = x^{3} + \left(a^{4} - a^{3} - 4 a^{2} + 4 a\right) x^{2} + \left(-172 a^{4} + 72 a^{3} + 808 a^{2} - 126 a - 461\right) x - 1112 a^{4} + 465 a^{3} + 5243 a^{2} - 885 a - 2921 \)
magma: E := ChangeRing(EllipticCurve([0, a^4 - a^3 - 4*a^2 + 4*a, 3*a^4 - a^3 - 14*a^2 + 3*a + 6, -172*a^4 + 72*a^3 + 808*a^2 - 126*a - 461, -1112*a^4 + 465*a^3 + 5243*a^2 - 885*a - 2921]),K);
 
sage: E = EllipticCurve(K, [0, a^4 - a^3 - 4*a^2 + 4*a, 3*a^4 - a^3 - 14*a^2 + 3*a + 6, -172*a^4 + 72*a^3 + 808*a^2 - 126*a - 461, -1112*a^4 + 465*a^3 + 5243*a^2 - 885*a - 2921])
 
gp (2.8): E = ellinit([0, a^4 - a^3 - 4*a^2 + 4*a, 3*a^4 - a^3 - 14*a^2 + 3*a + 6, -172*a^4 + 72*a^3 + 808*a^2 - 126*a - 461, -1112*a^4 + 465*a^3 + 5243*a^2 - 885*a - 2921],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((61,4 a^{4} - 2 a^{3} - 18 a^{2} + 5 a + 7)\) = \( \left(-2 a^{4} + 9 a^{2} - 3\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 61 \) = \( 61 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((844596301,a^{4} - 5 a^{2} + 577212721,-a^{4} + 5 a^{2} + a + 825070850,2 a^{4} - a^{3} - 9 a^{2} + 3 a + 116207970,-a^{4} + a^{3} + 5 a^{2} - 3 a + 547434175)\) = \( \left(-2 a^{4} + 9 a^{2} - 3\right)^{5} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 844596301 \) = \( 61^{5} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{814621975367829286400000}{844596301} a^{4} - \frac{588819537749162764800000}{844596301} a^{3} - \frac{3647503475859398758400000}{844596301} a^{2} + \frac{1821841937334970774327296}{844596301} a + \frac{1127015091876445279977472}{844596301} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a^{4} + 9 a^{2} - 3\right) \) \(61\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 61.1-b consists of curves linked by isogenies of degree 5.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.