Base field 5.5.24217.1
Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 5*x^3 - x^2 + 3*x + 1)
gp (2.8): K = nfinit(a^5 - 5*a^3 - a^2 + 3*a + 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([2*a^4 - 9*a^2 + 3, 4*a^4 - 2*a^3 - 19*a^2 + 6*a + 7, 3*a^4 - a^3 - 14*a^2 + 3*a + 6, -4*a^4 + 3*a^3 + 18*a^2 - 9*a - 5, 3*a^4 - 2*a^3 - 13*a^2 + 7*a + 3]),K);
sage: E = EllipticCurve(K, [2*a^4 - 9*a^2 + 3, 4*a^4 - 2*a^3 - 19*a^2 + 6*a + 7, 3*a^4 - a^3 - 14*a^2 + 3*a + 6, -4*a^4 + 3*a^3 + 18*a^2 - 9*a - 5, 3*a^4 - 2*a^3 - 13*a^2 + 7*a + 3])
gp (2.8): E = ellinit([2*a^4 - 9*a^2 + 3, 4*a^4 - 2*a^3 - 19*a^2 + 6*a + 7, 3*a^4 - a^3 - 14*a^2 + 3*a + 6, -4*a^4 + 3*a^3 + 18*a^2 - 9*a - 5, 3*a^4 - 2*a^3 - 13*a^2 + 7*a + 3],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((59,-a^{4} + 4 a^{2} + 1)\) | = | \( \left(a^{4} - 4 a^{2} - 1\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 59 \) | = | \( 59 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((3481,a^{4} - 5 a^{2} + 1645,-a^{4} + 5 a^{2} + a + 2704,2 a^{4} - a^{3} - 9 a^{2} + 3 a + 842,-a^{4} + a^{3} + 5 a^{2} - 3 a + 2756)\) | = | \( \left(a^{4} - 4 a^{2} - 1\right)^{2} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 3481 \) | = | \( 59^{2} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( -\frac{4479742}{3481} a^{4} + \frac{1301710}{3481} a^{3} + \frac{19202738}{3481} a^{2} - \frac{677371}{3481} a - \frac{7584461}{3481} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | Trivial |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(a^{4} - 4 a^{2} - 1\right) \) | \(59\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) .
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 59.1-a consists of this curve only.