Properties

Label 5.5.24217.1-43.1-a1
Base field 5.5.24217.1
Conductor norm \( 43 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){x}{y}+\left(-a^{4}+a^{3}+5a^{2}-2a-2\right){y}={x}^{3}+\left(-2a^{4}+9a^{2}+a-2\right){x}^{2}+\left(3a^{4}-5a^{3}-16a^{2}+16a+11\right){x}-6a^{4}+a^{3}+26a^{2}-2a-9\)
sage: E = EllipticCurve([K([2,4,-4,-1,1]),K([-2,1,9,0,-2]),K([-2,-2,5,1,-1]),K([11,16,-16,-5,3]),K([-9,-2,26,1,-6])])
 
gp: E = ellinit([Polrev([2,4,-4,-1,1]),Polrev([-2,1,9,0,-2]),Polrev([-2,-2,5,1,-1]),Polrev([11,16,-16,-5,3]),Polrev([-9,-2,26,1,-6])], K);
 
magma: E := EllipticCurve([K![2,4,-4,-1,1],K![-2,1,9,0,-2],K![-2,-2,5,1,-1],K![11,16,-16,-5,3],K![-9,-2,26,1,-6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3a^4-a^3-14a^2+3a+6)\) = \((3a^4-a^3-14a^2+3a+6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 43 \) = \(43\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^4+3a^3+18a^2-9a-11)\) = \((3a^4-a^3-14a^2+3a+6)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1849 \) = \(-43^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{370574018535535}{1849} a^{4} + \frac{325399130060553}{1849} a^{3} - \frac{1567138777154508}{1849} a^{2} - \frac{1746670430584042}{1849} a - \frac{422020411508467}{1849} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 87.598902213630043881141687722135666097 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.12581878 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3a^4-a^3-14a^2+3a+6)\) \(43\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 43.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.