Base field 5.5.24217.1
Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([2,4,-4,-1,1]),K([-2,1,9,0,-2]),K([-2,-2,5,1,-1]),K([11,16,-16,-5,3]),K([-9,-2,26,1,-6])])
gp: E = ellinit([Polrev([2,4,-4,-1,1]),Polrev([-2,1,9,0,-2]),Polrev([-2,-2,5,1,-1]),Polrev([11,16,-16,-5,3]),Polrev([-9,-2,26,1,-6])], K);
magma: E := EllipticCurve([K![2,4,-4,-1,1],K![-2,1,9,0,-2],K![-2,-2,5,1,-1],K![11,16,-16,-5,3],K![-9,-2,26,1,-6]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((3a^4-a^3-14a^2+3a+6)\) | = | \((3a^4-a^3-14a^2+3a+6)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 43 \) | = | \(43\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-4a^4+3a^3+18a^2-9a-11)\) | = | \((3a^4-a^3-14a^2+3a+6)^{2}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( -1849 \) | = | \(-43^{2}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{370574018535535}{1849} a^{4} + \frac{325399130060553}{1849} a^{3} - \frac{1567138777154508}{1849} a^{2} - \frac{1746670430584042}{1849} a - \frac{422020411508467}{1849} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | trivial |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 87.598902213630043881141687722135666097 \) | ||
Tamagawa product: | \( 2 \) | ||
Torsion order: | \(1\) | ||
Leading coefficient: | \( 1.12581878 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((3a^4-a^3-14a^2+3a+6)\) | \(43\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 43.1-a consists of this curve only.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.