Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
43.1-a1 43.1-a 5.5.24217.1 \( 43 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $87.59890221$ 1.12581878 \( \frac{370574018535535}{1849} a^{4} + \frac{325399130060553}{1849} a^{3} - \frac{1567138777154508}{1849} a^{2} - \frac{1746670430584042}{1849} a - \frac{422020411508467}{1849} \) \( \bigl[a^{4} - a^{3} - 4 a^{2} + 4 a + 2\) , \( -2 a^{4} + 9 a^{2} + a - 2\) , \( -a^{4} + a^{3} + 5 a^{2} - 2 a - 2\) , \( 3 a^{4} - 5 a^{3} - 16 a^{2} + 16 a + 11\) , \( -6 a^{4} + a^{3} + 26 a^{2} - 2 a - 9\bigr] \) ${y}^2+\left(a^{4}-a^{3}-4a^{2}+4a+2\right){x}{y}+\left(-a^{4}+a^{3}+5a^{2}-2a-2\right){y}={x}^{3}+\left(-2a^{4}+9a^{2}+a-2\right){x}^{2}+\left(3a^{4}-5a^{3}-16a^{2}+16a+11\right){x}-6a^{4}+a^{3}+26a^{2}-2a-9$
43.1-b1 43.1-b 5.5.24217.1 \( 43 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.001395606$ $16404.26636$ 1.47115856 \( -\frac{673276224}{1849} a^{4} + \frac{251558661}{1849} a^{3} + \frac{3275824811}{1849} a^{2} - \frac{548956180}{1849} a - \frac{1829937870}{1849} \) \( \bigl[2 a^{4} - a^{3} - 9 a^{2} + 3 a + 4\) , \( 4 a^{4} - 2 a^{3} - 19 a^{2} + 6 a + 7\) , \( -a^{4} + a^{3} + 5 a^{2} - 3 a - 2\) , \( -2 a^{4} + 3 a^{3} + 9 a^{2} - 13 a - 4\) , \( -3 a^{3} - a^{2} + 13 a + 5\bigr] \) ${y}^2+\left(2a^{4}-a^{3}-9a^{2}+3a+4\right){x}{y}+\left(-a^{4}+a^{3}+5a^{2}-3a-2\right){y}={x}^{3}+\left(4a^{4}-2a^{3}-19a^{2}+6a+7\right){x}^{2}+\left(-2a^{4}+3a^{3}+9a^{2}-13a-4\right){x}-3a^{3}-a^{2}+13a+5$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.