Properties

Label 5.5.24217.1-37.1-b1
Base field 5.5.24217.1
Conductor norm \( 37 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(3a^{4}-a^{3}-14a^{2}+3a+5\right){x}{y}+\left(a^{4}-5a^{2}+3\right){y}={x}^{3}+\left(7a^{4}+a^{3}-36a^{2}+2a\right){x}+27a^{4}-141a^{2}+20a+21\)
sage: E = EllipticCurve([K([5,3,-14,-1,3]),K([0,0,0,0,0]),K([3,0,-5,0,1]),K([0,2,-36,1,7]),K([21,20,-141,0,27])])
 
gp: E = ellinit([Polrev([5,3,-14,-1,3]),Polrev([0,0,0,0,0]),Polrev([3,0,-5,0,1]),Polrev([0,2,-36,1,7]),Polrev([21,20,-141,0,27])], K);
 
magma: E := EllipticCurve([K![5,3,-14,-1,3],K![0,0,0,0,0],K![3,0,-5,0,1],K![0,2,-36,1,7],K![21,20,-141,0,27]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-4a^2+2a)\) = \((a^4-a^3-4a^2+2a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37 \) = \(37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-2a^3-9a^2+6a-5)\) = \((a^4-a^3-4a^2+2a)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -50653 \) = \(-37^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{607404846039294275585}{50653} a^{4} + \frac{224545630126011499990}{50653} a^{3} + \frac{2954014134679662092528}{50653} a^{2} - \frac{484636114530509279215}{50653} a - \frac{1643054132795639869407}{50653} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6.0637264616903272803570141795618046051 \)
Tamagawa product: \( 3 \)
Torsion order: \(1\)
Leading coefficient: \( 1.05206651 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-4a^2+2a)\) \(37\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 37.1-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.