Properties

Base field 5.5.24217.1
Label 5.5.24217.1-29.1-b1
Conductor \((29,2 a^{4} - a^{3} - 10 a^{2} + 2 a + 4)\)
Conductor norm \( 29 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 5*x^3 - x^2 + 3*x + 1)
 
gp (2.8): K = nfinit(a^5 - 5*a^3 - a^2 + 3*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{4} - 4 a^{2}\right) x y + \left(2 a^{4} - 9 a^{2} + 2\right) y = x^{3} + \left(-3 a^{4} + 14 a^{2} + a - 4\right) x^{2} + \left(262 a^{4} - 221 a^{3} - 1174 a^{2} + 730 a + 366\right) x + 3311 a^{4} - 2134 a^{3} - 14758 a^{2} + 6316 a + 3956 \)
magma: E := ChangeRing(EllipticCurve([a^4 - 4*a^2, -3*a^4 + 14*a^2 + a - 4, 2*a^4 - 9*a^2 + 2, 262*a^4 - 221*a^3 - 1174*a^2 + 730*a + 366, 3311*a^4 - 2134*a^3 - 14758*a^2 + 6316*a + 3956]),K);
 
sage: E = EllipticCurve(K, [a^4 - 4*a^2, -3*a^4 + 14*a^2 + a - 4, 2*a^4 - 9*a^2 + 2, 262*a^4 - 221*a^3 - 1174*a^2 + 730*a + 366, 3311*a^4 - 2134*a^3 - 14758*a^2 + 6316*a + 3956])
 
gp (2.8): E = ellinit([a^4 - 4*a^2, -3*a^4 + 14*a^2 + a - 4, 2*a^4 - 9*a^2 + 2, 262*a^4 - 221*a^3 - 1174*a^2 + 730*a + 366, 3311*a^4 - 2134*a^3 - 14758*a^2 + 6316*a + 3956],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((29,2 a^{4} - a^{3} - 10 a^{2} + 2 a + 4)\) = \( \left(-2 a^{4} + a^{3} + 10 a^{2} - 2 a - 4\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 29 \) = \( 29 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((17249876309,a^{4} - 5 a^{2} + 15330541788,-a^{4} + 5 a^{2} + a + 4936804027,2 a^{4} - a^{3} - 9 a^{2} + 3 a + 3745110535,-a^{4} + a^{3} + 5 a^{2} - 3 a + 11514498930)\) = \( \left(-2 a^{4} + a^{3} + 10 a^{2} - 2 a - 4\right)^{7} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 17249876309 \) = \( 29^{7} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{1081740781776866294940863471759}{17249876309} a^{4} + \frac{2120240724895871393224432246770}{17249876309} a^{3} + \frac{43206056991447348862819034032}{594823321} a^{2} - \frac{1374124848200655188432751002870}{17249876309} a - \frac{551901067153896026723504870757}{17249876309} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a^{4} + a^{3} + 10 a^{2} - 2 a - 4\right) \) \(29\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 29.1-b consists of curves linked by isogenies of degree 7.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.