Properties

Base field 5.5.24217.1
Label 5.5.24217.1-17.1-a2
Conductor \((17,-2 a^{4} + a^{3} + 9 a^{2} - 3 a - 5)\)
Conductor norm \( 17 \)
CM no
base-change no
Q-curve no
Torsion order \( 4 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 5*x^3 - x^2 + 3*x + 1)
 
gp (2.8): K = nfinit(a^5 - 5*a^3 - a^2 + 3*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{4} - a^{3} - 4 a^{2} + 4 a + 2\right) x y + \left(-a^{4} + a^{3} + 5 a^{2} - 3 a - 3\right) y = x^{3} + \left(3 a^{4} - 2 a^{3} - 14 a^{2} + 6 a + 7\right) x^{2} + \left(-28 a^{4} + 14 a^{3} + 124 a^{2} - 21 a - 65\right) x - 92 a^{4} + 50 a^{3} + 410 a^{2} - 78 a - 227 \)
magma: E := ChangeRing(EllipticCurve([a^4 - a^3 - 4*a^2 + 4*a + 2, 3*a^4 - 2*a^3 - 14*a^2 + 6*a + 7, -a^4 + a^3 + 5*a^2 - 3*a - 3, -28*a^4 + 14*a^3 + 124*a^2 - 21*a - 65, -92*a^4 + 50*a^3 + 410*a^2 - 78*a - 227]),K);
 
sage: E = EllipticCurve(K, [a^4 - a^3 - 4*a^2 + 4*a + 2, 3*a^4 - 2*a^3 - 14*a^2 + 6*a + 7, -a^4 + a^3 + 5*a^2 - 3*a - 3, -28*a^4 + 14*a^3 + 124*a^2 - 21*a - 65, -92*a^4 + 50*a^3 + 410*a^2 - 78*a - 227])
 
gp (2.8): E = ellinit([a^4 - a^3 - 4*a^2 + 4*a + 2, 3*a^4 - 2*a^3 - 14*a^2 + 6*a + 7, -a^4 + a^3 + 5*a^2 - 3*a - 3, -28*a^4 + 14*a^3 + 124*a^2 - 21*a - 65, -92*a^4 + 50*a^3 + 410*a^2 - 78*a - 227],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((17,-2 a^{4} + a^{3} + 9 a^{2} - 3 a - 5)\) = \( \left(a^{2} - a - 3\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 17 \) = \( 17 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((289,a^{4} - 5 a^{2} + 79,-a^{4} + 5 a^{2} + a + 265,2 a^{4} - a^{3} - 9 a^{2} + 3 a + 277,-a^{4} + a^{3} + 5 a^{2} - 3 a + 245)\) = \( \left(a^{2} - a - 3\right)^{2} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 289 \) = \( 17^{2} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{54226785940}{289} a^{4} + \frac{41617197320}{289} a^{3} + \frac{246699945345}{289} a^{2} - \frac{124059587666}{289} a - \frac{76459531031}{289} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\times\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generators: $\left(4 a^{4} - 2 a^{3} - 18 a^{2} + 3 a + 10 : -a^{2} + a + 1 : 1\right)$,$\left(-\frac{9}{4} a^{4} + \frac{3}{2} a^{3} + \frac{41}{4} a^{2} - \frac{13}{4} a - \frac{25}{4} : \frac{1}{4} a^{4} - \frac{7}{8} a^{3} - \frac{9}{8} a^{2} + \frac{5}{2} a + \frac{7}{4} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - a - 3\right) \) \(17\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 17.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.