Properties

Label 5.5.160801.1-9.1-a1
Base field 5.5.160801.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.160801.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 4 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-5a^{2}+4a+2\right){x}{y}+\left(a^{4}-a^{3}-5a^{2}+4a+2\right){y}={x}^{3}+\left(-a^{4}+a^{3}+5a^{2}-5a-3\right){x}^{2}+\left(-a^{4}+5a^{2}+a\right){x}+4a^{4}+a^{3}-19a^{2}-8a+3\)
sage: E = EllipticCurve([K([2,4,-5,-1,1]),K([-3,-5,5,1,-1]),K([2,4,-5,-1,1]),K([0,1,5,0,-1]),K([3,-8,-19,1,4])])
 
gp: E = ellinit([Polrev([2,4,-5,-1,1]),Polrev([-3,-5,5,1,-1]),Polrev([2,4,-5,-1,1]),Polrev([0,1,5,0,-1]),Polrev([3,-8,-19,1,4])], K);
 
magma: E := EllipticCurve([K![2,4,-5,-1,1],K![-3,-5,5,1,-1],K![2,4,-5,-1,1],K![0,1,5,0,-1],K![3,-8,-19,1,4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-5a^2+3)\) = \((a^4-5a^2+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+5a^2-3)\) = \((a^4-5a^2+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -9 \) = \(-9\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{32217243917}{3} a^{4} + 18007168092 a^{3} + \frac{124525089365}{3} a^{2} - \frac{213146129860}{3} a + \frac{47603120438}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1448.0563475692153031212118782684899553 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.61111309 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-5a^2+3)\) \(9\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 9.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.