Properties

Label 5.5.160801.1-27.3-d2
Base field 5.5.160801.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.160801.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 4 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-4a^{2}+a\right){x}{y}+{y}={x}^{3}+\left(a^{4}-a^{3}-6a^{2}+3a+3\right){x}^{2}+\left(3a^{4}-14a^{2}-2a+5\right){x}+8a^{4}+2a^{3}-37a^{2}-13a+7\)
sage: E = EllipticCurve([K([0,1,-4,0,1]),K([3,3,-6,-1,1]),K([1,0,0,0,0]),K([5,-2,-14,0,3]),K([7,-13,-37,2,8])])
 
gp: E = ellinit([Polrev([0,1,-4,0,1]),Polrev([3,3,-6,-1,1]),Polrev([1,0,0,0,0]),Polrev([5,-2,-14,0,3]),Polrev([7,-13,-37,2,8])], K);
 
magma: E := EllipticCurve([K![0,1,-4,0,1],K![3,3,-6,-1,1],K![1,0,0,0,0],K![5,-2,-14,0,3],K![7,-13,-37,2,8]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-5a^2+4a+1)\) = \((-a^4+5a^2+a-3)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^4-3a^3-14a^2+12a-4)\) = \((-a^4+5a^2+a-3)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 19683 \) = \(3^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 199781 a^{4} - 165912 a^{3} - 1009767 a^{2} + 603539 a + 629286 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{4} + 5 a^{2} + a - 1 : -3 a^{4} - a^{3} + 13 a^{2} + 4 a - 3 : 1\right)$
Height \(0.069318596270554109564829055334969216883\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.069318596270554109564829055334969216883 \)
Period: \( 4244.2502979604471765262814533689300072 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.66839742 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+5a^2+a-3)\) \(3\) \(1\) \(IV^{*}\) Additive \(1\) \(3\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.3-d consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.