Properties

Label 5.5.14641.1-529.13-a1
Base field \(\Q(\zeta_{11})^+\)
Conductor norm \( 529 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 3, -4, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 3, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-4a^{2}+2\right){x}{y}+\left(a^{4}-4a^{2}+3\right){y}={x}^{3}+\left(-a^{3}+a^{2}+2a-1\right){x}^{2}+\left(-1537a^{4}+6825a^{3}-4314a^{2}-7437a+1156\right){x}+147589a^{4}-518205a^{3}+247122a^{2}+458708a-154955\)
sage: E = EllipticCurve([K([2,0,-4,0,1]),K([-1,2,1,-1,0]),K([3,0,-4,0,1]),K([1156,-7437,-4314,6825,-1537]),K([-154955,458708,247122,-518205,147589])])
 
gp: E = ellinit([Polrev([2,0,-4,0,1]),Polrev([-1,2,1,-1,0]),Polrev([3,0,-4,0,1]),Polrev([1156,-7437,-4314,6825,-1537]),Polrev([-154955,458708,247122,-518205,147589])], K);
 
magma: E := EllipticCurve([K![2,0,-4,0,1],K![-1,2,1,-1,0],K![3,0,-4,0,1],K![1156,-7437,-4314,6825,-1537],K![-154955,458708,247122,-518205,147589]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4+2a^3-5a^2-4a+4)\) = \((-a^4+a^3+3a^2-3a-2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 529 \) = \(23^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-106a^4+63a^3+369a^2-227a-45)\) = \((-a^4+a^3+3a^2-3a-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -78310985281 \) = \(-23^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{369039431219152047702358790473298695}{529} a^{4} - \frac{989950881753394751645286769153540921}{529} a^{3} + \frac{189441628332164246837405561968453764}{529} a^{2} + \frac{788381415458006631258384866252375903}{529} a - \frac{219339008287534382162591638591097088}{529} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(10 a^{4} - \frac{83}{4} a^{3} - 11 a^{2} + \frac{141}{4} a + \frac{61}{2} : -\frac{137}{8} a^{4} - \frac{19}{2} a^{3} + 82 a^{2} + \frac{87}{8} a - \frac{175}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6.9977529328633457676973266563056879651 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 1.44581672 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+3a^2-3a-2)\) \(23\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 529.13-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.