Base field \(\Q(\zeta_{11})^+\)
Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1)
gp (2.8): K = nfinit(a^5 - a^4 - 4*a^3 + 3*a^2 + 3*a - 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a^4 - 3*a^2 + 1, -a^4 - a^3 + 3*a^2 + 4*a + 1, a^4 + a^3 - 3*a^2 - 2*a + 1, -6*a^4 - a^3 + 20*a^2 + 4*a - 8, -6*a^4 + a^3 + 23*a^2 - 3*a - 15]),K);
sage: E = EllipticCurve(K, [a^4 - 3*a^2 + 1, -a^4 - a^3 + 3*a^2 + 4*a + 1, a^4 + a^3 - 3*a^2 - 2*a + 1, -6*a^4 - a^3 + 20*a^2 + 4*a - 8, -6*a^4 + a^3 + 23*a^2 - 3*a - 15])
gp (2.8): E = ellinit([a^4 - 3*a^2 + 1, -a^4 - a^3 + 3*a^2 + 4*a + 1, a^4 + a^3 - 3*a^2 - 2*a + 1, -6*a^4 - a^3 + 20*a^2 + 4*a - 8, -6*a^4 + a^3 + 23*a^2 - 3*a - 15],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((43,a^{4} - 2 a^{2} - a - 1)\) | = | \( \left(-a^{4} + 2 a^{2} + a + 1\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 43 \) | = | \( 43 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((147008443,a + 137461936,a^{2} + 30218599,a^{3} - 3 a + 77402164,a^{4} - 4 a^{2} + 119504652)\) | = | \( \left(-a^{4} + 2 a^{2} + a + 1\right)^{5} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 147008443 \) | = | \( 43^{5} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( \frac{245417473145}{147008443} a^{4} - \frac{392753447771}{147008443} a^{3} - \frac{61634765294}{3418801} a^{2} - \frac{2240734555627}{147008443} a - \frac{148495909040}{147008443} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | \(\Z/5\Z\) |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
| Generator: | $\left(-a^{3} + 3 a + 2 : a^{4} + a^{3} - 3 a^{2} - 6 a - 3 : 1\right)$ |
| magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(-a^{4} + 2 a^{2} + a + 1\right) \) | \(43\) | \(5\) | \(I_{5}\) | Split multiplicative | \(-1\) | \(1\) | \(5\) | \(5\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(5\) | 5B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
5.
Its isogeny class
43.2-b
consists of curves linked by isogenies of
degree 5.