Properties

Base field \(\Q(\zeta_{11})^+\)
Label 5.5.14641.1-23.4-a3
Conductor \((23,-a^{4} + a^{3} + 4 a^{2} - 3 a - 1)\)
Conductor norm \( 23 \)
CM no
base-change no
Q-curve no
Torsion order \( 10 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1)
 
gp: K = nfinit(a^5 - a^4 - 4*a^3 + 3*a^2 + 3*a - 1);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
 

Weierstrass equation

\( y^2 + \left(a^{4} + a^{3} - 3 a^{2} - 3 a\right) x y + \left(a^{4} + a^{3} - 4 a^{2} - 3 a + 2\right) y = x^{3} + \left(a^{4} + a^{3} - 3 a^{2} - 3 a + 1\right) x^{2} + \left(-7 a^{4} + 26 a^{3} + 4 a^{2} - 50 a + 12\right) x - 45 a^{4} + 84 a^{3} + 135 a^{2} - 274 a + 66 \)
sage: E = EllipticCurve(K, [a^4 + a^3 - 3*a^2 - 3*a, a^4 + a^3 - 3*a^2 - 3*a + 1, a^4 + a^3 - 4*a^2 - 3*a + 2, -7*a^4 + 26*a^3 + 4*a^2 - 50*a + 12, -45*a^4 + 84*a^3 + 135*a^2 - 274*a + 66])
 
gp: E = ellinit([a^4 + a^3 - 3*a^2 - 3*a, a^4 + a^3 - 3*a^2 - 3*a + 1, a^4 + a^3 - 4*a^2 - 3*a + 2, -7*a^4 + 26*a^3 + 4*a^2 - 50*a + 12, -45*a^4 + 84*a^3 + 135*a^2 - 274*a + 66],K)
 
magma: E := ChangeRing(EllipticCurve([a^4 + a^3 - 3*a^2 - 3*a, a^4 + a^3 - 3*a^2 - 3*a + 1, a^4 + a^3 - 4*a^2 - 3*a + 2, -7*a^4 + 26*a^3 + 4*a^2 - 50*a + 12, -45*a^4 + 84*a^3 + 135*a^2 - 274*a + 66]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((23,-a^{4} + a^{3} + 4 a^{2} - 3 a - 1)\) = \( \left(-a^{4} + 2 a^{2} + 1\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
\(N(\mathfrak{N}) \) = \( 23 \) = \( 23 \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
\(\mathfrak{D}\) = \((41426511213649,a + 30267070929271,a^{2} + 13414015120899,a^{3} - 3 a + 34525074146887,a^{4} - 4 a^{2} + 16402527694632)\) = \( \left(-a^{4} + 2 a^{2} + 1\right)^{10} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
\(N(\mathfrak{D})\) = \( 41426511213649 \) = \( 23^{10} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
\(j\) = \( -\frac{67578061913843073290}{41426511213649} a^{4} - \frac{20776798162111852984}{41426511213649} a^{3} + \frac{243672465429611249930}{41426511213649} a^{2} + \frac{116422572942295623941}{41426511213649} a - \frac{51184407321695715000}{41426511213649} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.

sage: E.rank()
 
magma: Rank(E);
 

Regulator: not available

sage: gens = E.gens(); gens
 
magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: E.regulator_of_points(gens)
 
magma: Regulator(gens);
 

Torsion subgroup

Structure: \(\Z/10\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Generator: $\left(-3 a^{4} + a^{3} + 22 a^{2} - 30 a + 7 : -101 a^{4} + 227 a^{3} + 108 a^{2} - 376 a + 94 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{4} + 2 a^{2} + 1\right) \) \(23\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 23.4-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.