Properties

Base field \(\Q(\zeta_{11})^+\)
Label 5.5.14641.1-23.2-a3
Conductor \((23,a^{4} - 3 a^{2} - a + 2)\)
Conductor norm \( 23 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1)
 
gp: K = nfinit(a^5 - a^4 - 4*a^3 + 3*a^2 + 3*a - 1);
 

Weierstrass equation

\( y^2 + \left(a^{3} - 2 a\right) x y + \left(a^{3} + a^{2} - 2 a - 2\right) y = x^{3} + \left(a^{4} - a^{3} - 4 a^{2} + 2 a + 3\right) x^{2} + \left(-187 a^{4} - 46 a^{3} + 506 a^{2} - 163 a - 437\right) x - 3375 a^{4} - 1423 a^{3} + 9018 a^{2} - 208 a - 5628 \)
magma: E := ChangeRing(EllipticCurve([a^3 - 2*a, a^4 - a^3 - 4*a^2 + 2*a + 3, a^3 + a^2 - 2*a - 2, -187*a^4 - 46*a^3 + 506*a^2 - 163*a - 437, -3375*a^4 - 1423*a^3 + 9018*a^2 - 208*a - 5628]),K);
 
sage: E = EllipticCurve(K, [a^3 - 2*a, a^4 - a^3 - 4*a^2 + 2*a + 3, a^3 + a^2 - 2*a - 2, -187*a^4 - 46*a^3 + 506*a^2 - 163*a - 437, -3375*a^4 - 1423*a^3 + 9018*a^2 - 208*a - 5628])
 
gp: E = ellinit([a^3 - 2*a, a^4 - a^3 - 4*a^2 + 2*a + 3, a^3 + a^2 - 2*a - 2, -187*a^4 - 46*a^3 + 506*a^2 - 163*a - 437, -3375*a^4 - 1423*a^3 + 9018*a^2 - 208*a - 5628],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((23,a^{4} - 3 a^{2} - a + 2)\) = \( \left(-a^{4} + 3 a^{2} + a - 2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 23 \) = \( 23 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((23,a + 6,a^{2} + 10,a^{3} - 3 a + 14,a^{4} - 4 a^{2} + 21)\) = \( \left(-a^{4} + 3 a^{2} + a - 2\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp: E.disc
 
\(N(\mathfrak{D})\) = \( 23 \) = \( 23 \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
\(j\) = \( \frac{13574836097602783212489}{23} a^{4} + \frac{12473814277431687078179}{23} a^{3} - \frac{30359946152158241249912}{23} a^{2} - \frac{17532655195108990218943}{23} a + \frac{7073167122009569142064}{23} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp: E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.

magma: Rank(E);
 
sage: E.rank()
 

Regulator: not available

magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: gens = E.gens(); gens
 
magma: Regulator(gens);
 
sage: E.regulator_of_points(gens)
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
Generator: $\left(-3 a^{4} - 7 a^{3} + 2 a^{2} + 21 a + 18 : 5 a^{4} + a^{3} - 14 a^{2} + 3 a + 8 : 1\right)$
magma: [piT(P) : P in Generators(T)];
 
sage: T.gens()
 
gp: T[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{4} + 3 a^{2} + a - 2\right) \) \(23\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 23.2-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.