Base field \(\Q(\zeta_{11})^+\)
Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1)
gp (2.8): K = nfinit(a^5 - a^4 - 4*a^3 + 3*a^2 + 3*a - 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a^4 + a^3 - 3*a^2 - 2*a + 1, a^2 + a - 1, a^4 + a^3 - 4*a^2 - 2*a + 2, 49*a^4 - 67*a^3 - 121*a^2 + 192*a - 44, 233*a^4 - 388*a^3 - 573*a^2 + 1088*a - 256]),K);
sage: E = EllipticCurve(K, [a^4 + a^3 - 3*a^2 - 2*a + 1, a^2 + a - 1, a^4 + a^3 - 4*a^2 - 2*a + 2, 49*a^4 - 67*a^3 - 121*a^2 + 192*a - 44, 233*a^4 - 388*a^3 - 573*a^2 + 1088*a - 256])
gp (2.8): E = ellinit([a^4 + a^3 - 3*a^2 - 2*a + 1, a^2 + a - 1, a^4 + a^3 - 4*a^2 - 2*a + 2, 49*a^4 - 67*a^3 - 121*a^2 + 192*a - 44, 233*a^4 - 388*a^3 - 573*a^2 + 1088*a - 256],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((23,a^{4} - 3 a^{2} - a + 2)\) | = | \( \left(-a^{4} + 3 a^{2} + a - 2\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 23 \) | = | \( 23 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((41426511213649,a + 6450908953021,a^{2} + 11159440284376,a^{3} - 3 a + 25023983519019,a^{4} - 4 a^{2} + 13414015120903)\) | = | \( \left(-a^{4} + 3 a^{2} + a - 2\right)^{10} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 41426511213649 \) | = | \( 23^{10} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( -\frac{47416580387872896214}{41426511213649} a^{4} + \frac{88354860075954926274}{41426511213649} a^{3} + \frac{114797344933419666883}{41426511213649} a^{2} - \frac{244287782065752925838}{41426511213649} a + \frac{64820146352754535654}{41426511213649} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | \(\Z/10\Z\) |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
| Generator: | $\left(3 a^{4} - 4 a^{3} - 5 a^{2} + 8 a - 2 : -5 a^{4} - 15 a^{3} + 21 a^{2} + 16 a - 6 : 1\right)$ |
| magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(-a^{4} + 3 a^{2} + a - 2\right) \) | \(23\) | \(10\) | \(I_{10}\) | Split multiplicative | \(-1\) | \(1\) | \(10\) | \(10\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
| \(5\) | 5B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 5 and 10.
Its isogeny class
23.2-a
consists of curves linked by isogenies of
degrees dividing 10.