Properties

Label 5.5.14641.1-23.1-a2
Base field \(\Q(\zeta_{11})^+\)
Conductor norm \( 23 \)
CM no
Base change no
Q-curve no
Torsion order \( 10 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 3, -4, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 3, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-2a-2\right){x}{y}+\left(a^{3}-3a+1\right){y}={x}^{3}+\left(-a^{4}-a^{3}+5a^{2}+4a-4\right){x}^{2}+\left(-5a^{4}+7a^{3}+11a^{2}-3a-4\right){x}-a^{4}-13a^{3}+27a^{2}+14a-8\)
sage: E = EllipticCurve([K([-2,-2,1,1,0]),K([-4,4,5,-1,-1]),K([1,-3,0,1,0]),K([-4,-3,11,7,-5]),K([-8,14,27,-13,-1])])
 
gp: E = ellinit([Polrev([-2,-2,1,1,0]),Polrev([-4,4,5,-1,-1]),Polrev([1,-3,0,1,0]),Polrev([-4,-3,11,7,-5]),Polrev([-8,14,27,-13,-1])], K);
 
magma: E := EllipticCurve([K![-2,-2,1,1,0],K![-4,4,5,-1,-1],K![1,-3,0,1,0],K![-4,-3,11,7,-5],K![-8,14,27,-13,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-3a^2-1)\) = \((a^4-3a^2-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 23 \) = \(23\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-134a^4-148a^3+893a^2+376a-602)\) = \((a^4-3a^2-1)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -41426511213649 \) = \(-23^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{74868976618071917973}{41426511213649} a^{4} - \frac{54092178455960064989}{41426511213649} a^{3} - \frac{312961789930170680193}{41426511213649} a^{2} + \frac{134824139137681173208}{41426511213649} a + \frac{261494050662338262657}{41426511213649} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/10\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-9 a^{4} + 8 a^{3} + 26 a^{2} - 18 a + 2 : -39 a^{4} + 34 a^{3} + 119 a^{2} - 82 a + 12 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 993.12606699865359490731750704130415623 \)
Tamagawa product: \( 10 \)
Torsion order: \(10\)
Leading coefficient: \( 0.820765345 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-3a^2-1)\) \(23\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 23.1-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.