Properties

Label 5.5.14641.1-121.1-a2
Base field \(\Q(\zeta_{11})^+\)
Conductor norm \( 121 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 3, -4, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 3, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{4}+a^{3}-4a^{2}-2a+3\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a-3\right){x}^{2}+\left(2a^{4}-5a^{3}-6a^{2}+13a-1\right){x}+16a^{4}-31a^{3}-40a^{2}+86a-22\)
sage: E = EllipticCurve([K([-1,0,1,0,0]),K([-3,3,1,-1,0]),K([3,-2,-4,1,1]),K([-1,13,-6,-5,2]),K([-22,86,-40,-31,16])])
 
gp: E = ellinit([Polrev([-1,0,1,0,0]),Polrev([-3,3,1,-1,0]),Polrev([3,-2,-4,1,1]),Polrev([-1,13,-6,-5,2]),Polrev([-22,86,-40,-31,16])], K);
 
magma: E := EllipticCurve([K![-1,0,1,0,0],K![-3,3,1,-1,0],K![3,-2,-4,1,1],K![-1,13,-6,-5,2],K![-22,86,-40,-31,16]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-2a^2+3a+1)\) = \((a^2+a-2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 121 \) = \(11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-33a^4-11a^3+121a^2+44a-77)\) = \((a^2+a-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -214358881 \) = \(-11^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -121 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 141.24471012829877023009518098436127033 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.16731165 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2+a-2)\) \(11\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(11\) 11B.1.10[5]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 11.
Its isogeny class 121.1-a consists of curves linked by isogenies of degree 11.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q\) 121.c2