Properties

Base field 4.4.9909.1
Label 4.4.9909.1-25.1-e1
Conductor \((25,a^{3} - 2 a^{2} - 4 a + 5)\)
Conductor norm \( 25 \)
CM yes (\(-3\))
base-change no
Q-curve yes
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - 6*x^2 - 3*x + 3)
 
gp (2.8): K = nfinit(a^4 - 6*a^2 - 3*a + 3);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) y = x^{3} + \left(-a^{3} + a^{2} + 3 a\right) x^{2} + \left(-a^{3} + 2 a^{2} + 3 a - 1\right) x - 5 a^{3} + 6 a^{2} + 21 a - 12 \)
magma: E := ChangeRing(EllipticCurve([0, -a^3 + a^2 + 3*a, a + 1, -a^3 + 2*a^2 + 3*a - 1, -5*a^3 + 6*a^2 + 21*a - 12]),K);
 
sage: E = EllipticCurve(K, [0, -a^3 + a^2 + 3*a, a + 1, -a^3 + 2*a^2 + 3*a - 1, -5*a^3 + 6*a^2 + 21*a - 12])
 
gp (2.8): E = ellinit([0, -a^3 + a^2 + 3*a, a + 1, -a^3 + 2*a^2 + 3*a - 1, -5*a^3 + 6*a^2 + 21*a - 12],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((25,a^{3} - 2 a^{2} - 4 a + 5)\) = \( \left(-a^{3} + 2 a^{2} + 3 a - 4\right)^{2} \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 25 \) = \( 5^{2} \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((390625,a + 206579,a^{3} - a^{2} - 4 a + 193214,a^{2} - a + 300805)\) = \( \left(-a^{3} + 2 a^{2} + 3 a - 4\right)^{8} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 390625 \) = \( 5^{8} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( 0 \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z[(1+\sqrt{-3})/2]\)   ( Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $N(\mathrm{U}(1))$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{3} + 2 a^{2} + 3 a - 4\right) \) \(5\) \(1\) \(IV^*\) Additive \(-1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

For all other primes \(p\), the image is the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 25.1-e consists of curves linked by isogenies of degree 3.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.