Properties

Label 4.4.9909.1-25.1-d1
Base field 4.4.9909.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-4a-2\right){x}{y}+\left(a^{2}-a-3\right){y}={x}^{3}+\left(-a^{3}+5a+2\right){x}^{2}+\left(-5a^{3}+3a^{2}+25a+4\right){x}+5a^{3}-10a^{2}-19a+31\)
sage: E = EllipticCurve([K([-2,-4,0,1]),K([2,5,0,-1]),K([-3,-1,1,0]),K([4,25,3,-5]),K([31,-19,-10,5])])
 
gp: E = ellinit([Polrev([-2,-4,0,1]),Polrev([2,5,0,-1]),Polrev([-3,-1,1,0]),Polrev([4,25,3,-5]),Polrev([31,-19,-10,5])], K);
 
magma: E := EllipticCurve([K![-2,-4,0,1],K![2,5,0,-1],K![-3,-1,1,0],K![4,25,3,-5],K![31,-19,-10,5]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-2a^2-4a+5)\) = \((-a^3+2a^2+3a-4)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3-3a^2-7a-2)\) = \((-a^3+2a^2+3a-4)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 625 \) = \(5^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 906201 a^{3} + 1751706 a^{2} - 179496 a - 477441 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{3} - 2 a^{2} - 10 a + 3 : -5 a^{3} + 7 a^{2} + 23 a - 16 : 1\right)$
Height \(0.28025078199124255907543970573078004253\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{2}{3} a^{3} - \frac{1}{3} a^{2} - 4 a : a^{2} - \frac{2}{3} a - 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.28025078199124255907543970573078004253 \)
Period: \( 769.63512481869654461835235348164576263 \)
Tamagawa product: \( 3 \)
Torsion order: \(3\)
Leading coefficient: \( 2.88905317515154 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+2a^2+3a-4)\) \(5\) \(3\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 25.1-d consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.