Properties

Label 4.4.9909.1-21.1-c2
Base field 4.4.9909.1
Conductor norm \( 21 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-4a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{3}-a^{2}-4a+1\right){x}^{2}+\left(203a^{3}+99a^{2}-1170a-1195\right){x}-3273a^{3}-1665a^{2}+18781a+19343\)
sage: E = EllipticCurve([K([1,-4,-1,1]),K([1,-4,-1,1]),K([1,1,0,0]),K([-1195,-1170,99,203]),K([19343,18781,-1665,-3273])])
 
gp: E = ellinit([Polrev([1,-4,-1,1]),Polrev([1,-4,-1,1]),Polrev([1,1,0,0]),Polrev([-1195,-1170,99,203]),Polrev([19343,18781,-1665,-3273])], K);
 
magma: E := EllipticCurve([K![1,-4,-1,1],K![1,-4,-1,1],K![1,1,0,0],K![-1195,-1170,99,203],K![19343,18781,-1665,-3273]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-3)\) = \((-a^3+a^2+4a)\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((9a^3-9a^2-45a+36)\) = \((-a^3+a^2+4a)^{8}\cdot(a^3-a^2-4a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 321489 \) = \(3^{8}\cdot7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2514435768239}{147} a^{3} + \frac{14274453830897}{441} a^{2} + \frac{2028661440026}{49} a - \frac{11951649907706}{441} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{114}{169} a^{3} + \frac{204}{169} a^{2} - \frac{906}{169} a - \frac{1563}{169} : \frac{58246}{2197} a^{3} + \frac{27477}{2197} a^{2} - \frac{334498}{2197} a - \frac{334874}{2197} : 1\right)$
Height \(1.0248391681320776542882490039234074859\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(5 a^{3} + 3 a^{2} - 30 a - 34 : 4 a^{3} + a^{2} - 22 a - 18 : 1\right)$ $\left(-3 a^{3} - a^{2} + 18 a + 18 : -2 a^{3} - a^{2} + 10 a + 10 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.0248391681320776542882490039234074859 \)
Period: \( 283.15804099363172340663075737413322456 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 2.91520902703565 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((a^3-a^2-4a+1)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 21.1-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.