Properties

Label 4.4.9909.1-21.1-b3
Base field 4.4.9909.1
Conductor norm \( 21 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{3}-a^{2}-3a+1\right){y}={x}^{3}+\left(a^{3}-5a-2\right){x}^{2}+\left(-a^{3}+2a^{2}+2a-1\right){x}+9a^{3}+3a^{2}-50a-49\)
sage: E = EllipticCurve([K([-2,-1,1,0]),K([-2,-5,0,1]),K([1,-3,-1,1]),K([-1,2,2,-1]),K([-49,-50,3,9])])
 
gp: E = ellinit([Polrev([-2,-1,1,0]),Polrev([-2,-5,0,1]),Polrev([1,-3,-1,1]),Polrev([-1,2,2,-1]),Polrev([-49,-50,3,9])], K);
 
magma: E := EllipticCurve([K![-2,-1,1,0],K![-2,-5,0,1],K![1,-3,-1,1],K![-1,2,2,-1],K![-49,-50,3,9]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-3)\) = \((-a^3+a^2+4a)\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^3-3a^2-27a+6)\) = \((-a^3+a^2+4a)^{4}\cdot(a^3-a^2-4a+1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 194481 \) = \(3^{4}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{108278519}{2401} a^{3} - \frac{629396917}{7203} a^{2} - \frac{246620209}{2401} a + \frac{494923985}{7203} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a^{3} - a^{2} + 17 a + 16 : -16 a^{3} - 8 a^{2} + 92 a + 94 : 1\right)$
Height \(0.66123042438893976196885344233609423766\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{3} + 10 a + 8 : 4 a^{3} - a^{2} - 19 a - 15 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.66123042438893976196885344233609423766 \)
Period: \( 168.90452920806389930177172000593441597 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 2.24392948350420 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((a^3-a^2-4a+1)\) \(7\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 21.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.