Base field 4.4.9909.1
Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - 6*x^2 - 3*x + 3)
gp (2.8): K = nfinit(a^4 - 6*a^2 - 3*a + 3);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a^2 - a - 2, a^3 - 5*a - 2, a^3 - a^2 - 3*a + 1, 34*a^3 + 12*a^2 - 188*a - 186, 183*a^3 + 62*a^2 - 1009*a - 987]),K);
sage: E = EllipticCurve(K, [a^2 - a - 2, a^3 - 5*a - 2, a^3 - a^2 - 3*a + 1, 34*a^3 + 12*a^2 - 188*a - 186, 183*a^3 + 62*a^2 - 1009*a - 987])
gp (2.8): E = ellinit([a^2 - a - 2, a^3 - 5*a - 2, a^3 - a^2 - 3*a + 1, 34*a^3 + 12*a^2 - 188*a - 186, 183*a^3 + 62*a^2 - 1009*a - 987],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((21,-a^{2} + 2 a + 3)\) | = | \( \left(-a^{3} + a^{2} + 4 a\right) \cdot \left(a^{3} - a^{2} - 4 a + 1\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 21 \) | = | \( 3 \cdot 7 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((441,9 a + 225,9 a^{3} - 9 a^{2} - 36 a + 261,9 a^{2} - 9 a + 324)\) | = | \( \left(-a^{3} + a^{2} + 4 a\right)^{8} \cdot \left(a^{3} - a^{2} - 4 a + 1\right)^{2} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 321489 \) | = | \( 3^{8} \cdot 7^{2} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( -\frac{2514435768239}{147} a^{3} + \frac{14274453830897}{441} a^{2} + \frac{2028661440026}{49} a - \frac{11951649907706}{441} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | \(\Z/2\Z\times\Z/2\Z\) |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
| Generators: | $\left(\frac{3}{2} a^{3} - \frac{3}{4} a^{2} - \frac{27}{4} a - \frac{17}{4} : -\frac{1}{2} a^{3} + 3 a^{2} - \frac{7}{4} a - \frac{65}{8} : 1\right)$,$\left(a^{3} - 5 a - 7 : 3 a^{2} - 4 a - 9 : 1\right)$ |
| magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(-a^{3} + a^{2} + 4 a\right) \) | \(3\) | \(2\) | \(I_{8}\) | Non-split multiplicative | \(1\) | \(1\) | \(8\) | \(8\) |
| \( \left(a^{3} - a^{2} - 4 a + 1\right) \) | \(7\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
21.1-b
consists of curves linked by isogenies of
degrees dividing 4.