Properties

Base field 4.4.9909.1
Label 4.4.9909.1-21.1-a3
Conductor \((21,-a^{2} + 2 a + 3)\)
Conductor norm \( 21 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - 6*x^2 - 3*x + 3)
 
gp (2.8): K = nfinit(a^4 - 6*a^2 - 3*a + 3);
 

Weierstrass equation

\( y^2 + x y + \left(a^{2} - 2\right) y = x^{3} + a x^{2} + \left(-13750 a^{3} + 16605 a^{2} + 62452 a - 34158\right) x + 1313123 a^{3} - 1585648 a^{2} - 5964098 a + 3262387 \)
magma: E := ChangeRing(EllipticCurve([1, a, a^2 - 2, -13750*a^3 + 16605*a^2 + 62452*a - 34158, 1313123*a^3 - 1585648*a^2 - 5964098*a + 3262387]),K);
 
sage: E = EllipticCurve(K, [1, a, a^2 - 2, -13750*a^3 + 16605*a^2 + 62452*a - 34158, 1313123*a^3 - 1585648*a^2 - 5964098*a + 3262387])
 
gp (2.8): E = ellinit([1, a, a^2 - 2, -13750*a^3 + 16605*a^2 + 62452*a - 34158, 1313123*a^3 - 1585648*a^2 - 5964098*a + 3262387],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((21,-a^{2} + 2 a + 3)\) = \( \left(-a^{3} + a^{2} + 4 a\right) \cdot \left(a^{3} - a^{2} - 4 a + 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 21 \) = \( 3 \cdot 7 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((3313283022731761938915897603,a + 806646898146722486643285801,a^{3} - a^{2} - 4 a + 96317893137344191554325512,a^{2} - a + 1160258709050186946021772371)\) = \( \left(-a^{3} + a^{2} + 4 a\right) \cdot \left(a^{3} - a^{2} - 4 a + 1\right)^{32} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 3313283022731761938915897603 \) = \( 3 \cdot 7^{32} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{8726799587448504883954432291309058}{3313283022731761938915897603} a^{3} + \frac{3512609295216958802166282509619697}{1104427674243920646305299201} a^{2} + \frac{13211649577996599292098856645855219}{1104427674243920646305299201} a - \frac{7226027092698629340082787287567899}{1104427674243920646305299201} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-64 a^{3} + 78 a^{2} + 291 a - \frac{641}{4} : 32 a^{3} - \frac{79}{2} a^{2} - \frac{291}{2} a + \frac{649}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{3} + a^{2} + 4 a\right) \) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\( \left(a^{3} - a^{2} - 4 a + 1\right) \) \(7\) \(2\) \(I_{32}\) Non-split multiplicative \(1\) \(1\) \(32\) \(32\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 21.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.