Properties

Label 4.4.9909.1-15.1-b3
Base field 4.4.9909.1
Conductor norm \( 15 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{3}-a^{2}-3a+2\right){y}={x}^{3}+\left(-a^{2}+2a+2\right){x}^{2}+\left(51a^{3}-98a^{2}-124a+85\right){x}+296a^{3}-560a^{2}-720a+467\)
sage: E = EllipticCurve([K([-3,0,1,0]),K([2,2,-1,0]),K([2,-3,-1,1]),K([85,-124,-98,51]),K([467,-720,-560,296])])
 
gp: E = ellinit([Polrev([-3,0,1,0]),Polrev([2,2,-1,0]),Polrev([2,-3,-1,1]),Polrev([85,-124,-98,51]),Polrev([467,-720,-560,296])], K);
 
magma: E := EllipticCurve([K![-3,0,1,0],K![2,2,-1,0],K![2,-3,-1,1],K![85,-124,-98,51],K![467,-720,-560,296]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a)\) = \((-a^3+a^2+4a)\cdot(-a^3+2a^2+3a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 15 \) = \(3\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-17a^3-23a^2+150a+105)\) = \((-a^3+a^2+4a)^{2}\cdot(-a^3+2a^2+3a-4)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 87890625 \) = \(3^{2}\cdot5^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{422494591886387}{29296875} a^{3} + \frac{1087832991903677}{29296875} a^{2} + \frac{19383695526463}{1953125} a - \frac{160867452574272}{9765625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{3} - 2 a^{2} - 6 a : -3 a^{2} - 4 a - 1 : 1\right)$
Height \(0.30064573076647616729489308124548338046\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(2 a^{3} - 3 a^{2} - \frac{27}{4} a + \frac{1}{2} : -\frac{1}{8} a^{3} + \frac{7}{4} a^{2} - \frac{9}{8} a - \frac{19}{4} : 1\right)$ $\left(a^{3} - 2 a^{2} - 2 a + 2 : -a^{3} + a^{2} + 3 a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.30064573076647616729489308124548338046 \)
Period: \( 168.35735220100399423838613234850383842 \)
Tamagawa product: \( 20 \)  =  \(2\cdot( 2 \cdot 5 )\)
Torsion order: \(4\)
Leading coefficient: \( 2.54239027220219 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a^3+2a^2+3a-4)\) \(5\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 15.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.