Properties

Label 4.4.9909.1-15.1-b2
Base field 4.4.9909.1
Conductor norm \( 15 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{3}-a^{2}-3a+2\right){y}={x}^{3}+\left(-a^{2}+2a+2\right){x}^{2}+\left(6a^{3}-13a^{2}-14a+15\right){x}-26a^{3}+48a^{2}+64a-40\)
sage: E = EllipticCurve([K([-3,0,1,0]),K([2,2,-1,0]),K([2,-3,-1,1]),K([15,-14,-13,6]),K([-40,64,48,-26])])
 
gp: E = ellinit([Polrev([-3,0,1,0]),Polrev([2,2,-1,0]),Polrev([2,-3,-1,1]),Polrev([15,-14,-13,6]),Polrev([-40,64,48,-26])], K);
 
magma: E := EllipticCurve([K![-3,0,1,0],K![2,2,-1,0],K![2,-3,-1,1],K![15,-14,-13,6],K![-40,64,48,-26]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a)\) = \((-a^3+a^2+4a)\cdot(-a^3+2a^2+3a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 15 \) = \(3\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^3+4a^2+19a+6)\) = \((-a^3+a^2+4a)\cdot(-a^3+2a^2+3a-4)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -9375 \) = \(-3\cdot5^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{106752257}{9375} a^{3} - \frac{10897274}{3125} a^{2} + \frac{42742157}{625} a + \frac{211007117}{3125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} - a^{2} - 4 a - 1 : 2 a^{3} - 3 a^{2} - 6 a : 1\right)$
Height \(0.15032286538323808364744654062274169023\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{3} + 4 a^{2} + 4 a - 4 : 7 a^{3} - 13 a^{2} - 17 a + 10 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.15032286538323808364744654062274169023 \)
Period: \( 1346.8588176080319539070890587880307074 \)
Tamagawa product: \( 5 \)  =  \(1\cdot5\)
Torsion order: \(4\)
Leading coefficient: \( 2.54239027220219 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-a^3+2a^2+3a-4)\) \(5\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 15.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.