Properties

Base field 4.4.9909.1
Label 4.4.9909.1-15.1-b1
Conductor \((15,a^{3} - a^{2} - 5 a)\)
Conductor norm \( 15 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - 6*x^2 - 3*x + 3)
 
gp (2.8): K = nfinit(a^4 - 6*a^2 - 3*a + 3);
 

Weierstrass equation

\( y^2 + \left(a^{2} - 3\right) x y + \left(a^{3} - a^{2} - 3 a + 2\right) y = x^{3} + \left(-a^{2} + 2 a + 2\right) x^{2} + \left(-9 a^{3} + 22 a^{2} + a - 50\right) x + 1301 a^{3} - 2423 a^{2} - 3266 a + 1886 \)
magma: E := ChangeRing(EllipticCurve([a^2 - 3, -a^2 + 2*a + 2, a^3 - a^2 - 3*a + 2, -9*a^3 + 22*a^2 + a - 50, 1301*a^3 - 2423*a^2 - 3266*a + 1886]),K);
 
sage: E = EllipticCurve(K, [a^2 - 3, -a^2 + 2*a + 2, a^3 - a^2 - 3*a + 2, -9*a^3 + 22*a^2 + a - 50, 1301*a^3 - 2423*a^2 - 3266*a + 1886])
 
gp (2.8): E = ellinit([a^2 - 3, -a^2 + 2*a + 2, a^3 - a^2 - 3*a + 2, -9*a^3 + 22*a^2 + a - 50, 1301*a^3 - 2423*a^2 - 3266*a + 1886],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((15,a^{3} - a^{2} - 5 a)\) = \( \left(-a^{3} + a^{2} + 4 a\right) \cdot \left(-a^{3} + 2 a^{2} + 3 a - 4\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 15 \) = \( 3 \cdot 5 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((9375,a + 6579,a^{3} - a^{2} - 4 a + 2589,a^{2} - a + 3930)\) = \( \left(-a^{3} + a^{2} + 4 a\right) \cdot \left(-a^{3} + 2 a^{2} + 3 a - 4\right)^{5} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 9375 \) = \( 3 \cdot 5^{5} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{68545439115264271007}{9375} a^{3} + \frac{59190226096332625399}{3125} a^{2} + \frac{3249096321761237218}{625} a - \frac{26459436802864644617}{3125} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-2 a^{3} + 5 a^{2} + \frac{5}{4} a - \frac{15}{2} : \frac{15}{8} a^{3} - \frac{1}{4} a^{2} - \frac{57}{8} a - \frac{19}{4} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{3} + a^{2} + 4 a\right) \) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\( \left(-a^{3} + 2 a^{2} + 3 a - 4\right) \) \(5\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 15.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.