Properties

Label 4.4.9909.1-13.1-b3
Base field 4.4.9909.1
Conductor norm \( 13 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(-a^{3}+a^{2}+4a\right){x}^{2}+\left(-220a^{3}+274a^{2}+1002a-570\right){x}+2785a^{3}-3453a^{2}-12765a+7022\)
sage: E = EllipticCurve([K([1,0,0,0]),K([0,4,1,-1]),K([1,0,0,0]),K([-570,1002,274,-220]),K([7022,-12765,-3453,2785])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([0,4,1,-1]),Polrev([1,0,0,0]),Polrev([-570,1002,274,-220]),Polrev([7022,-12765,-3453,2785])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![0,4,1,-1],K![1,0,0,0],K![-570,1002,274,-220],K![7022,-12765,-3453,2785]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+2a+2)\) = \((-a^2+2a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 13 \) = \(13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-a^2-4a-2)\) = \((-a^2+2a+2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 13 \) = \(13\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{54952780378700013073}{13} a^{3} - \frac{66356600984288283278}{13} a^{2} - \frac{249589735669688957882}{13} a + \frac{136526345323237627463}{13} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{213}{49} a^{3} - \frac{229}{49} a^{2} - \frac{894}{49} a + \frac{543}{49} : -\frac{603}{343} a^{3} + \frac{963}{343} a^{2} + \frac{2720}{343} a - \frac{2540}{343} : 1\right)$
Height \(0.83268551475266936289684476785956567701\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{13}{3} a^{3} - \frac{13}{3} a^{2} - \frac{52}{3} a + \frac{35}{3} : -\frac{7}{9} a^{3} + \frac{49}{9} a^{2} + \frac{26}{3} a - \frac{26}{3} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.83268551475266936289684476785956567701 \)
Period: \( 403.69802529924675885800667326782354074 \)
Tamagawa product: \( 1 \)
Torsion order: \(3\)
Leading coefficient: \( 1.50086006684516 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+2a+2)\) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 13.1-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.