Properties

Label 4.4.9248.1-16.3-b2
Base field 4.4.9248.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9248.1

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{3}-4a+1\right){y}={x}^{3}+\left(a^{3}+a^{2}-4a-3\right){x}^{2}+\left(-3a^{3}-7a^{2}+2a+7\right){x}-5a^{3}-9a^{2}+5a+3\)
sage: E = EllipticCurve([K([-2,1,1,0]),K([-3,-4,1,1]),K([1,-4,0,1]),K([7,2,-7,-3]),K([3,5,-9,-5])])
 
gp: E = ellinit([Polrev([-2,1,1,0]),Polrev([-3,-4,1,1]),Polrev([1,-4,0,1]),Polrev([7,2,-7,-3]),Polrev([3,5,-9,-5])], K);
 
magma: E := EllipticCurve([K![-2,1,1,0],K![-3,-4,1,1],K![1,-4,0,1],K![7,2,-7,-3],K![3,5,-9,-5]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-3)\) = \((-a^3+4a+1)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^2-5)\) = \((-a^3+4a+1)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1024 \) = \(2^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -867342 a^{2} + 3958532 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} - a^{2} + 4 a + 3 : -a - 2 : 1\right)$
Height \(0.048335139065080215918673689619914125098\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} a^{3} - \frac{1}{2} a^{2} + 2 a + \frac{3}{2} : -\frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{11}{4} a : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.048335139065080215918673689619914125098 \)
Period: \( 2252.9076824092616880959952605419703548 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.26470924791732 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+4a+1)\) \(2\) \(2\) \(I_{2}^{*}\) Additive \(-1\) \(4\) \(10\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 16.3-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.