Properties

Label 4.4.725.1-89.1-a3
Base field 4.4.725.1
Conductor norm \( 89 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a\right){x}{y}+a^{2}{y}={x}^{3}+\left(a^{3}-3a+1\right){x}^{2}+\left(-5a^{3}-19a^{2}+10a+5\right){x}-40a^{3}-95a^{2}+47a+31\)
sage: E = EllipticCurve([K([0,-3,0,1]),K([1,-3,0,1]),K([0,0,1,0]),K([5,10,-19,-5]),K([31,47,-95,-40])])
 
gp: E = ellinit([Polrev([0,-3,0,1]),Polrev([1,-3,0,1]),Polrev([0,0,1,0]),Polrev([5,10,-19,-5]),Polrev([31,47,-95,-40])], K);
 
magma: E := EllipticCurve([K![0,-3,0,1],K![1,-3,0,1],K![0,0,1,0],K![5,10,-19,-5],K![31,47,-95,-40]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3+5a)\) = \((-2a^3+5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 89 \) = \(89\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((6a^3+19a^2-35a-36)\) = \((-2a^3+5a)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 704969 \) = \(89^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{14708200401504137868}{704969} a^{3} + \frac{16109789617602422544}{704969} a^{2} - \frac{10369823372478176308}{704969} a - \frac{7019630806488219407}{704969} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-3 a^{3} + 3 a^{2} + 4 a - 2 : 2 a^{3} - 2 a^{2} - a + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 9.6428524045394343552897416529677790909 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 0.805784732213557 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^3+5a)\) \(89\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 89.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.