Properties

Base field 4.4.725.1
Label 4.4.725.1-89.1-a1
Conductor \((89,-3 a^{3} + 4 a^{2} + 5 a - 3)\)
Conductor norm \( 89 \)
CM no
base-change no
Q-curve no
Torsion order \( 6 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 3*x^2 + x + 1)
 
gp (2.8): K = nfinit(a^4 - a^3 - 3*a^2 + a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{3} - 3 a\right) x y + a^{2} y = x^{3} + \left(a^{3} - 3 a + 1\right) x^{2} + \left(-10 a^{3} + 16 a^{2} + 25 a - 25\right) x + 19 a^{3} - 30 a^{2} - 38 a + 38 \)
magma: E := ChangeRing(EllipticCurve([a^3 - 3*a, a^3 - 3*a + 1, a^2, -10*a^3 + 16*a^2 + 25*a - 25, 19*a^3 - 30*a^2 - 38*a + 38]),K);
 
sage: E = EllipticCurve(K, [a^3 - 3*a, a^3 - 3*a + 1, a^2, -10*a^3 + 16*a^2 + 25*a - 25, 19*a^3 - 30*a^2 - 38*a + 38])
 
gp (2.8): E = ellinit([a^3 - 3*a, a^3 - 3*a + 1, a^2, -10*a^3 + 16*a^2 + 25*a - 25, 19*a^3 - 30*a^2 - 38*a + 38],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((89,-3 a^{3} + 4 a^{2} + 5 a - 3)\) = \( \left(-2 a^{3} + 5 a\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 89 \) = \( 89 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((7921,a^{3} - a^{2} - 2 a + 1256,a + 7313,a^{2} - a + 3231)\) = \( \left(-2 a^{3} + 5 a\right)^{2} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 7921 \) = \( 89^{2} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{27644790669914081}{7921} a^{3} - \frac{40838543328263983}{7921} a^{2} - \frac{63443769227304147}{7921} a + \frac{57923964030045892}{7921} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/6\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(2 a^{3} - 2 a^{2} - 3 a + 2 : -3 a^{3} - a^{2} + 2 a - 2 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a^{3} + 5 a\right) \) \(89\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 89.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.